Meng, K., Bau, D., Andonian, A. & Belinkov, Y. Locating and editing factual associations in GPT.
Adv. Neural Inf. Process. Syst. (2022). at
<https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-
Abstract-Conference.html>
26. Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. Mass-editing memory in a
transformer. in International Conference on Learning Representations (arxiv.org, 2023). at
<https://arxiv.org/abs/2210.07229>
27. Mitchell, E., Lin, C., Bosselut, A., Manning, C. D. & Finn, C. Memory-Based Model Editing at
Scale. in Proceedings of the 39th International Conference on Machine Learning (eds. Chaudhuri,
K., Jegelka, S., Song, L., Szepesvari, C., Niu, G. & Sabato, S.) 162, 15817–15831 (PMLR, 17--23
Jul 2022).
28. Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. Aging with GRACE:
Lifelong Model Editing with Discrete Key-Value Adaptors. in Advances in Neural Information
Processing Systems (2023). at <https://arxiv.org/abs/2211.11031>
29. Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. Fast model editing at scale. in
International Conference on Learning Representations (arxiv.org, 2022). at
<https://arxiv.org/abs/2110.11309>
30. Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S. & Babenko, A. Editable Neural Networks. in
International Conference on Learning Representations (2020). at <http://arxiv.org/abs/2004.00345>
31. De Cao, N., Aziz, W. & Titov, I. Editing Factual Knowledge in Language Models. in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing 6491–6506
(Association for Computational Linguistics, 2021).
32. Zhong, Z., Wu, Z., Manning, C. D., Potts, C. & Chen, D. MQuAKE: Assessing Knowledge Editing
in Language Models via Multi-Hop Questions. arXiv [cs.CL] (2023). at
<http://arxiv.org/abs/2305.14795>
33. Cohen, R., Biran, E., Yoran, O., Globerson, A. & Geva, M. Evaluating the ripple effects of
knowledge editing in language models. Trans. Assoc. Comput. Linguist. 12, 283–298 (2023).
De Cao, N., Aziz, W. & Titov, I. Editing Factual Knowledge in Language Models. arXiv [cs.CL]
(2021). at <http://arxiv.org/abs/2104.08164>
35. Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. Mass-Editing Memory in a
Transformer. arXiv [cs.CL] (2022). at <http://arxiv.org/abs/2210.07229>
36. Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. D. Fast Model Editing at Scale. arXiv
[cs.LG] (2021). at <http://arxiv.org/abs/2110.11309>
37. Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. Aging with GRACE:
Lifelong Model Editing with Key-Value Adaptors. (2022). at
<https://openreview.net/pdf?id=ngCT1EelZk>
Language Models: Problems, Methods, and Opportunities. arXiv [cs.CL] (2023). at
<http://arxiv.org/abs/2305.13172>
41. Hase, P., Hofweber, T., Zhou, X., Stengel-Eskin, E. & Bansal, M. Fundamental problems with model
editing: How should rational belief revision work in LLMs? arXiv [cs.CL] (2024). at
<https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=FO90FgM
AAAAJ:M3ejUd6NZC8C>
42. Cheng, S., Tian, B., Liu, Q., Chen, X., Wang, Y., Chen, H. & Zhang, N. Can We Edit Multimodal
Large Language Models? in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing (eds. Bouamor, H., Pino, J. & Bali, K.) 13877–13888 (Association for
Computational Linguistics, 2023).
Here are the URLs for the specified papers:
1. **Locating and editing factual associations in GPT**
Meng, K., Bau, D., Andonian, A. & Belinkov, Y. (2022).
[Link to Paper](https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html)
2. **Mass-editing memory in a transformer**
Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. (2023).
[Link to Paper](https://arxiv.org/abs/2210.07229)
3. **Memory-Based Model Editing at Scale**
Mitchell, E., Lin, C., Bosselut, A., Manning, C. D. & Finn, C. (2022).
[Link to Paper](https://proceedings.mlr.press/v162/mitchell22a.html)
4. **Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors**
Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. (2023).
[Link to Paper](https://arxiv.org/abs/2211.11031)
5. **Fast model editing at scale**
Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. D. (2022).
[Link to Paper](https://arxiv.org/abs/2110.11309)
6. **Editable Neural Networks**
Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S. & Babenko, A. (2020).
[Link to Paper](http://arxiv.org/abs/2004.00345)
7. **Editing Factual Knowledge in Language Models**
De Cao, N., Aziz, W. & Titov, I. (2021).
[Link to Paper](http://arxiv.org/abs/2104.08164)
8. **MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions**
Zhong, Z., Wu, Z., Manning, C. D., Potts, C. & Chen, D. (2023).
[Link to Paper](http://arxiv.org/abs/2305.14795)
9. **Evaluating the ripple effects of knowledge editing in language models**
Cohen, R., Biran, E., Yoran, O., Globerson, A. & Geva, M. (2023).
[Link to Paper](https://transacl.org/ojs/index.php/tacl/article/view/3736)
10. **Language Models: Problems, Methods, and Opportunities**
(2023).
[Link to Paper](http://arxiv.org/abs/2305.13172)
11. **Fundamental problems with model editing: How should rational belief revision work in LLMs?**
Hase, P., Hofweber, T., Zhou, X., Stengel-Eskin, E. & Bansal, M. (2024).
[Link to Paper](https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=FO90FgMAAAAAJ:M3ejUd6NZC8C)
12. **Can We Edit Multimodal Large Language Models?**
Cheng, S., Tian, B., Liu, Q., Chen, X., Wang, Y., Chen, H. & Zhang, N. (2023).
[Link to Paper](https://arxiv.org/abs/2305.14795)
Citations:
[1] https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b