Blumenthal HT. Amyloidosis: A Universal Disease of Aging? 2004.
Journal of Gerontology: medical sciences. 2004. 59A(4): 361–369.
James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014. Mar 25;82(12):1045-50. doi:10.1212/WNL.0000000000000240.
James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014. Mar 25;82(12):1045-50. doi:10.1212/WNL.0000000000000240.
Aviv Cohen, Liron Ross, Iftach Nachman, and Shoshana Bar-Nun.
Aggregation of PolyQ Proteins Is Increased upon Yeast Aging and Affected by
Sir2 and Hsf1: Novel Quantitative Biochemical and Microscopic Assays. PLoS One.
2012. 7(9): e44785.
4.
D. C. David, N. Ollikainen, J. C. Trinidad, M. P. Cary, A. L.
Burlingame, and C. Kenyon. Widespread protein aggregation as an inherent part
of aging in C. elegans. PLoS Biology.
2010. 8(8)
5.
Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD.
P-glycoprotein expression and amyloid accumulation in human aging and
Alzheimer's disease: preliminary observations. Neurobiol Aging. 2015. Sep; 36(9):2475-82.
doi: 10.1016/j.neurobiolaging.2015.05.020.
6.
Leonor Miller-Fleming, Flaviano Giorgini, and Tiago F. Outeiro.
Yeast as a model for studying human neurodegenerative disorders. Biotechnol. J.
2008. 3: 325–338
7.
Sandra Tenreiro & Tiago Fleming Outeiro. Simple is good: yeast
models of neurodegeneration, FEMS Yeast Res. 2010.
Dec; 10(8):970-9
8.
Amor AJ, Castanzo DT, Delany SP, Selechnik DM, van Ooy A, Cameron
DM. The ribosome-associated complex antagonizes prion formation in yeast.
Prion. 2015. 9(2):144-64. doi: 10.1080/19336896.2015.1022022.
9.
Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a
protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation,
stability, and toxicity of the [PSI] prion. Mol Cell Biol. 1999
Dec;19(12):8103-12.
10.
Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, DammerEB, Peng J, Frydman J. The cotranslational function of ribosome-associatedHsp70 in eukaryotic protein homeostasis. Cell. 2013 Jan 17; 152(1-2):196-209.doi: 10.1016/j.cell.2012.12.001.
11.
Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, andDeuerling E. A dual function for chaperones SSB–RAC and the NAC nascentpolypeptide–associated complex on ribosomes. Journal of Cell Biology. 2010. 189(1): 57-68
12.
Makrides S.C. Protein synthesis and degradation during aging and
senescence. Biol. Rev. Camb. Philos. Soc. 1983. 58:343–422.3.
13.
Rattan S.I. Synthesis, modifications, and turnover of proteins
during aging. Exp. Gerontol. 1996. 31:33–47.
14.
Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev
V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M. Protein biogenesis machinery
is a driver of replicative aging in yeast. eLife. 2015: 4:e08527. DOI: 10.7554/eLife.08527
15.
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N,Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M.Yeast life span extension by depletion of 60s ribosomal subunits is mediated byGcn4. Cell. 2008. Apr 18; 133(2):292-302. doi: 10.1016/j.cell.2008.02.037.
16.
Steffen KK, McCormick MA, Pham KM, MacKay VL, Delaney JR, MurakamiCJ, Kaeberlein M, and Kennedy BK. Ribosome Deficiency Protects Against ERStress in Saccharomyces cerevisiae.Genetics. 2012. May; 191(1): 107–118. doi: 10.1534/genetics.111.136549. PMCID:PMC3338253
17.
Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED,
Tchao BN, Pak DN, Welton KL, Promislow DEL, Thomas JH, Kaeberlein M, Kennedy
BK. Quantitative evidence for conserved longevity pathways between divergent
eukaryotic species. Genome Res. 2008. 18: 564–570.
18.
Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC,
Green R, Shen B, and Liu JO. Inhibition of eukaryotic translation elongation by
cycloheximide and lactimidomycin. Nat Chem Biol. 2010. 6, 209–17. doi:
10.1038/nchembio.304.
19.
Kramer G, Boehringer D, Ban N, and Bukau B. The Ribosome as aplatform for co-translational processing, folding, and targeting of newlysynthesized proteins. 2009. Nature Structural and Molecular Biology. 16(6):589-597. doi:10.1038/nsmb.1614
20.
Kaeberlein M and Kennedy BK. HOT TOPIC: Protein translation. Aging
Cell 2007. 6: 731–734.
21.
Ding Q, Markesbery WR, Chen Q, Li F, and Jeffrey N. Keller.
Ribosome Dysfunction Is an Early Event in Alzheimer's Disease. The Journal of
Neuroscience. 2005. 25(40): 9171-9175; doi: 10.1523/JNEUROSCI.3040-05.2005
22.
Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling
protein aggregation. Nat Rev Mol Cell Biol. 2010. Nov;11(11):777-88. doi:
10.1038/nrm2993.
23.
Saarikangas J and Barral Y. Protein aggregates are associated with
replicative aging without compromising protein quality control. Elife. 2015 Nov
6;4. pii: e06197. doi: 10.7554/eLife.06197.
24.
Wickner RB, Edskes HK, Bateman DA, Gorkovskiy A, Dayani Y,
Bezsonov EE, and Mukhamedova M. Yeast Prions: Proteins Templating Conformation
and an Anti-prion System. PLoS Pathog 2015. 11(2): e1004584.
doi:10.1371/journal.ppat.1004584
25.
Allen K. D., Chernova T. A., Tennant E. P., Wilkinson K. D.,
Chernoff Y. O. Effects of ubiquitin system alterations on the formation and
loss of a yeast prion. J. Biol. Chem. 2007. 282, 3004–3013
26.
Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski
PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T,
Budnik BA, Drummond DA. Reversible, Specific, Active Aggregates of Endogenous
Proteins Assemble upon Heat Stress. Cell. 2015. Sep 10; 162(6):1286-98. doi:
10.1016/j.cell.2015.08.041.
27.
Kabani M, Redeker V, Melki R. A role for the proteasome in the
turnover of Sup35p and in [PSI(+) ] prion propagation. Mol Microbiol. 2014 May;
92(3):507-28.
28.
Speldewinde SH, Doronina VA, Grant CM. Autophagy protects against
de novo formation of the [PSI+] prion in yeast. Mol Biol Cell. 2015 Dec 15; 26(25):4541-51.
doi: 10.1091/mbc.E15-08-0548.
29.
Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition
between two distinct quality control compartments. Nature. 2008. Aug 28;
454(7208):1088-95.
30.
Verghese J, Abrams J, Wang Y, and Morano KA. Biology of the Heat
Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiol. Mol. Biol.
Rev. 2012. June; 76(2): 115-158
31.
Specht S, Miller SBM, Mogk A, Bukau B. Hsp42 is required for
sequestration of protein aggregates into deposition sites in Saccharomyces
cerevisiae J Cell Biol. 2011. November 14; 195(4): 617–629. doi:
10.1083/jcb.201106037
32.
Kiktev DA, Melomed MM, Lu CD, Newnam GP, Chernoff YO. Feedback
control of prion formation and propagation by the ribosome-associated chaperone
complex. Mol Microbiol. 2015. May;96(3):621-32. doi: 10.1111/mmi.12960. PMID:
25649498
33.
Lopez N, Halladay J, Walter W, Craig EA. SSB, encoding a
ribosome-associated chaperone, is coordinately regulated with ribosomal protein
genes. J Bacteriol. 1999. 181: 3136–3143. PMCID: PMCPMC93769.
34.
Calderwood SK, Murshid A, Prince T. The Shock of Aging: Molecular
Chaperones and the Heat Shock Response in Longevity and Aging – A Mini-Review.
Gerontology 2009. 55:550–558.
35.
Shama S, Lai C-Y, Antoniazzi JM, Jiang JC, and Jazwinski SM. Heat
Stress-Induced Life Span Extension in Yeast. Experimental Cell Research. 1998.
245, 379–388.
36. Morley JF and Morimoto
RI. Regulation of Longevity in Caenorhabditis
elegans by Heat Shock Factor and Molecular Chaperones. Mol Biol Cell. 2004 Feb; 15(2): 657–664.
37.
Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OC, Kampinga
HH. Specific protein homeostatic functions of small heat-shock proteins increase
lifespan. Aging Cell. 2015. Dec 25. doi: 10.1111/acel.12422
38.
Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for
polyglutamine-expansion protein aggregation and cellular toxicity is dynamic
and influenced by aging in Caenorhabditis
elegans. PNAS. 2002. 99(16): 10417–10422.
39.
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing
activities protect against age-onset proteotoxicity. Science. 2006. Sep
15;313(5793):1604-10.
40.
Teixeira-Castro, A., Ailion, M., Jalles, A., Brignull, H. R.,
Vilaca, J. L., Dias, N., Rodrigues, P., Oliveira, J. F., Neves-Carvalho, A.,
Morimoto, R. I., & Maciel, P.
Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue
by the DAF-16 and HSF-1 pathways. Hum Mol Genet. 2011. 20: 2996-3009. doi:10.1093/hmg/ddr203
41.
Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S,
Antuono P, Butts AM, Hantke NC, Lancaster MA, Rao SM. Interactive effects of
physical activity and APOE-ε4 on BOLD semantic memory activation in healthy
elders. Neuroimage. 2011 Jan 1;54(1):635-44. doi:
10.1016/j.neuroimage.2010.07.070.
42.
Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S,
Hazlett KE, Figueroa CM, Kandah CC, Kay CD, Matthews MA, and Rao SM. Physical
activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer's
disease. Front Aging Neurosci. 2014; 6: 61. Published online 2014 Apr 23. doi: 10.3389/fnagi.2014.00061 PMCID: PMC4005962
43.
Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, and
Nybo L. Exercise induces the release of heat shock protein 72 from the human
brain in vivo. Cell Stress Chaperones. 2004 Jul; 9(3): 276–280.
44.
Sadowska-Krępa E and Kłapcińska B. Exercise-induced heat shock
protein (HSP70) response in human skeletal muscle and leukocytes. Medicina
Sportiva 2006. 10 (2):36-41
45.
Kayani AC, Morton JP, McArdle A: The exercise-induced stress
response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 2008.
33:1033–1041.
46.
Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T. Asymmetric
inheritance of oxidatively damaged proteins during cytokinesis. Science 2003.
299:1751-1753.
47.
Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery
of a yeast prion after mild heat shock. J Mol Biol. 2011. 408(3):432-48
48.
Erjavec N, Larsson L, Grantham J, and Nyström T. Accelerated aging
and failure to segregate damaged proteins in Sir2 mutants can be suppressed by
overproducing the protein aggregation-remodeling factor Hsp104p. Genes and
Development. 2007. 21: 2410-2421.
49.
Tessarz P, Schwarz M, Mogk A, Bukau B. The yeast AAA+ chaperone
Hsp104 is part of a network that links the actin cytoskeleton with the
inheritance of damaged proteins. Mol Cell Biol. 2009. 29: 3738-3745.
50.
Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom
T. The polarisome is required for segregation and retrograde transport of
protein aggregates. Cell. 2010. 140:257- 267.
51.
Orlandi I, Bettiga M, Alberghina L, Nystrom T, Vai M:
Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants
is independent of genomic silencing. Biochim Biophys Acta 2010. 1803:630-638.
52.
Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R.
Motility and segregation of Hsp104-associated protein aggregates in budding
yeast. Cell. 2011. 147: 1186-1196.
53.
Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality
control bypasses cell-based limitations on proteostasis to promote prion
curing. Elife. 2014 Dec 9:3. doi: 10.7554/eLife.04288.
54.
Liu B, Larsson L, Franssens V, Hao X, Hill SM, Andersson V,
Hoglund D, Song J, Yang X, Oling D, Grantham J, Winderickx J, Nystrom T.
Segregation of protein aggregates involves actin and the polarity machinery.
Cell. 2011. 147: 959-961.
55.
Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A,
Ross RT, McClain M, Li R. Organelle-based aggregation and retention of damaged
proteins in asymmetrically dividing cells. Cell. 2014. 159(3): 530-42.
56.
Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, et al. Histone
H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009.
459:802–807.
57.
Moore DL, Pilz GA, Araúzo-Bravo MJ, Barral Y, Jessberger S. A
mechanism for the segregation of age in mammalian neural stem cells. Science.
2015. Sep 18; 349(6254):1334-8. doi: 10.1126/science.aac9868.
58.
Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of
transcriptional silencing causes sterility in old mother cells of S.
cerevisiae. Cell. 1996. 84:633–642
59.
Ibstedt S, Sideri TC, Grant CM, Tamás MJ. Global analysis of
protein aggregation in yeast during physiological conditions and arsenite stress.
Biol Open. 2014. Sep 12;3(10):913-23. doi: 10.1242/bio.20148938.
60.
Rand JD and Grant CM. The thioredoxin system protects ribosomes
against stress-induced aggregation. Mol. Biol. Cell. 2006. 17: 387–401.
10.1091/mbc.E05-06-0520
61.
Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. 2003.
Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae.
Proc Natl Acad Sci 100: 3889–3894
62.
Lindstrom DL, Gottschling DE. The mother enrichment program: a
genetic system for facile replicative life span analysis in Saccharomyces
cerevisiae. Genetics. 2009. 183:413–422. doi: 10.1534/genetics.109.106229.
63.
Taylor S.C., Posch A. The design of a quantitative Western blot
experiment. Biomed Res Int. 2014. Article ID 361590 http://dx.doi.org/10.1155/2014/361590.
64.
Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature.
1959. 183:1751-1752.
65.
Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N,
Kerr EO, Kirkland KT, Fields S, and Kennedy BK. Regulation of yeast replicative
life span by TOR and Sch9 in response to nutrients. Science. 2005. Nov 18;
310(5751): 1193-6.
66.
Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA,
Gafken PR, Hsu JJ, and Gottschling DE. Identification of Long-Lived Proteins
Retained in Cells Undergoing Repeated Asymmetric Divisions. 2014. PNAS 111(39):
14019-14026.
No comments:
Post a Comment