Tuesday, November 17, 2020

tf.keras.layers.Dense()

 



tf.keras.layers.Dense(
    units
, activation=None, use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer
='zeros', kernel_regularizer=None, bias_regularizer=None,
    activity_regularizer
=None, kernel_constraint=None, bias_constraint=None,
   
**kwargs
)


Dense implements the operation: 

output = activation(dot(input, kernel) + bias) 

where activation is the element-wise activation function passed as the activation argument, kernel is a weights matrix created by the layer, and bias is a bias vector created by the layer (only applicable if use_bias is True).


units: dimension of the output space


Output shape:

N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape (batch_size, input_dim), the output would have shape (batch_size, units).





No comments:

Post a Comment