Monday, January 6, 2025

human scRNA aging data

 There are some human single cell aging data,

 
 
 
 
https://pmc.ncbi.nlm.nih.gov/articles/PMC10306289/#_ad93_

Human PBMC scRNA-seq–based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity

 1, 2, 2, 1,3 1 4 4 1,* 2,*

Saturday, January 4, 2025

Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective

 

https://arxiv.org/abs/2412.14135


Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective

OpenAI o1 represents a significant milestone in Artificial Inteiligence, which achieves expert-level performances on many challanging tasks that require strong reasoning this http URL has claimed that the main techinique behinds o1 is the reinforcement learining. Recent works use alternative approaches like knowledge distillation to imitate o1's reasoning style, but their effectiveness is limited by the capability ceiling of the teacher model. Therefore, this paper analyzes the roadmap to achieving o1 from the perspective of reinforcement learning, focusing on four key components: policy initialization, reward design, search, and learning. Policy initialization enables models to develop human-like reasoning behaviors, equipping them with the ability to effectively explore solution spaces for complex problems. Reward design provides dense and effective signals via reward shaping or reward modeling, which is the guidance for both search and learning. Search plays a crucial role in generating high-quality solutions during both training and testing phases, which can produce better solutions with more computation. Learning utilizes the data generated by search for improving policy, which can achieve the better performance with more parameters and more searched data. Existing open-source projects that attempt to reproduce o1 can be seem as a part or a variant of our roadmap. Collectively, these components underscore how learning and search drive o1's advancement, making meaningful contributions to the development of LLM.


AI model editing techniques

 chatgpt output, un-edited. Some wrong links and erorrs are apparent. 


1. Fine-Tuning


2. Prompt Engineering


3. Model Editing via Retrieval-Augmented Generation (RAG)

  • Definition: Integrating external databases or retrieval systems to improve or adapt the model's outputs without direct parameter changes.
  • References:

4. Knowledge Injection


5. Soft Prompt Tuning


6. Modular Transfer Learning


7. Dynamic Reweighting


8. Model Surgery


9. Continual Learning


10. Gradient Editing


11. Reinforcement Learning from Human Feedback (RLHF)

  • Definition: Using human evaluations to fine-tune models, particularly for aligning AI with desired ethical or stylistic outcomes.
  • References:

12. Model Patching


13. Parameter-Free Updating


14. Memory Editing

  • Definition: Directly modifying or updating specific "memories" in a model, allowing it to adjust responses to certain inputs or queries without retraining.
  • Techniques:
    • MEMIT (Model Editing Made Informed by Targeting)
    • ROME (Rank-One Model Editing)
  • References:

15. Multi-Modal Model Editing


16. Federated Learning Adjustments


17. Meta-Learning (Learning to Learn)


This version now includes Memory Editing with references to emerging techniques like MEMIT and ROME for direct manipulation of model-specific knowledge.

Friday, January 3, 2025

editable neural networks in health science

 Meng, K., Bau, D., Andonian, A. & Belinkov, Y. Locating and editing factual associations in GPT.

Adv. Neural Inf. Process. Syst. (2022). at

<https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-

Abstract-Conference.html>

26. Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. Mass-editing memory in a

transformer. in International Conference on Learning Representations (arxiv.org, 2023). at

<https://arxiv.org/abs/2210.07229>

27. Mitchell, E., Lin, C., Bosselut, A., Manning, C. D. & Finn, C. Memory-Based Model Editing at

Scale. in Proceedings of the 39th International Conference on Machine Learning (eds. Chaudhuri,

K., Jegelka, S., Song, L., Szepesvari, C., Niu, G. & Sabato, S.) 162, 15817–15831 (PMLR, 17--23

Jul 2022).

28. Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. Aging with GRACE:

Lifelong Model Editing with Discrete Key-Value Adaptors. in Advances in Neural Information

Processing Systems (2023). at <https://arxiv.org/abs/2211.11031>

29. Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. Fast model editing at scale. in

International Conference on Learning Representations (arxiv.org, 2022). at

<https://arxiv.org/abs/2110.11309>

30. Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S. & Babenko, A. Editable Neural Networks. in

International Conference on Learning Representations (2020). at <http://arxiv.org/abs/2004.00345>

31. De Cao, N., Aziz, W. & Titov, I. Editing Factual Knowledge in Language Models. in Proceedings of

the 2021 Conference on Empirical Methods in Natural Language Processing 6491–6506

(Association for Computational Linguistics, 2021).

32. Zhong, Z., Wu, Z., Manning, C. D., Potts, C. & Chen, D. MQuAKE: Assessing Knowledge Editing

in Language Models via Multi-Hop Questions. arXiv [cs.CL] (2023). at

<http://arxiv.org/abs/2305.14795>

33. Cohen, R., Biran, E., Yoran, O., Globerson, A. & Geva, M. Evaluating the ripple effects of

knowledge editing in language models. Trans. Assoc. Comput. Linguist. 12, 283–298 (2023).

De Cao, N., Aziz, W. & Titov, I. Editing Factual Knowledge in Language Models. arXiv [cs.CL]

(2021). at <http://arxiv.org/abs/2104.08164>

35. Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. Mass-Editing Memory in a

Transformer. arXiv [cs.CL] (2022). at <http://arxiv.org/abs/2210.07229>

36. Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. D. Fast Model Editing at Scale. arXiv

[cs.LG] (2021). at <http://arxiv.org/abs/2110.11309>

37. Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. Aging with GRACE:

Lifelong Model Editing with Key-Value Adaptors. (2022). at

<https://openreview.net/pdf?id=ngCT1EelZk>

Language Models: Problems, Methods, and Opportunities. arXiv [cs.CL] (2023). at

<http://arxiv.org/abs/2305.13172>

41. Hase, P., Hofweber, T., Zhou, X., Stengel-Eskin, E. & Bansal, M. Fundamental problems with model

editing: How should rational belief revision work in LLMs? arXiv [cs.CL] (2024). at

<https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=FO90FgM

AAAAJ:M3ejUd6NZC8C>

42. Cheng, S., Tian, B., Liu, Q., Chen, X., Wang, Y., Chen, H. & Zhang, N. Can We Edit Multimodal

Large Language Models? in Proceedings of the 2023 Conference on Empirical Methods in Natural

Language Processing (eds. Bouamor, H., Pino, J. & Bali, K.) 13877–13888 (Association for

Computational Linguistics, 2023).



Here are the URLs for the specified papers:


1. **Locating and editing factual associations in GPT**  

   Meng, K., Bau, D., Andonian, A. & Belinkov, Y. (2022).  

   [Link to Paper](https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html)


2. **Mass-editing memory in a transformer**  

   Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y. & Bau, D. (2023).  

   [Link to Paper](https://arxiv.org/abs/2210.07229)


3. **Memory-Based Model Editing at Scale**  

   Mitchell, E., Lin, C., Bosselut, A., Manning, C. D. & Finn, C. (2022).  

   [Link to Paper](https://proceedings.mlr.press/v162/mitchell22a.html)


4. **Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors**  

   Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim, Y. & Ghassemi, M. (2023).  

   [Link to Paper](https://arxiv.org/abs/2211.11031)


5. **Fast model editing at scale**  

   Mitchell, E., Lin, C., Bosselut, A., Finn, C. & Manning, C. D. (2022).  

   [Link to Paper](https://arxiv.org/abs/2110.11309)


6. **Editable Neural Networks**  

   Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S. & Babenko, A. (2020).  

   [Link to Paper](http://arxiv.org/abs/2004.00345)


7. **Editing Factual Knowledge in Language Models**  

   De Cao, N., Aziz, W. & Titov, I. (2021).  

   [Link to Paper](http://arxiv.org/abs/2104.08164)


8. **MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions**  

   Zhong, Z., Wu, Z., Manning, C. D., Potts, C. & Chen, D. (2023).  

   [Link to Paper](http://arxiv.org/abs/2305.14795)


9. **Evaluating the ripple effects of knowledge editing in language models**  

   Cohen, R., Biran, E., Yoran, O., Globerson, A. & Geva, M. (2023).  

   [Link to Paper](https://transacl.org/ojs/index.php/tacl/article/view/3736)


10. **Language Models: Problems, Methods, and Opportunities**  

    (2023).  

    [Link to Paper](http://arxiv.org/abs/2305.13172)


11. **Fundamental problems with model editing: How should rational belief revision work in LLMs?**  

    Hase, P., Hofweber, T., Zhou, X., Stengel-Eskin, E. & Bansal, M. (2024).  

    [Link to Paper](https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=FO90FgMAAAAAJ:M3ejUd6NZC8C)


12. **Can We Edit Multimodal Large Language Models?**  

    Cheng, S., Tian, B., Liu, Q., Chen, X., Wang, Y., Chen, H. & Zhang, N. (2023).  

    [Link to Paper](https://arxiv.org/abs/2305.14795)


Citations:

[1] https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b


Thursday, January 2, 2025

Autonomous AI-Driven Drug Discovery

 

A Framework for Autonomous AI-Driven Drug Discovery

Douglas W SelingerTimothy R WallEleni StylianouEhab M KhalilJedidiah GaetzOren Levy

https://www.biorxiv.org/content/10.1101/2024.12.17.629024v2