Monday, May 26, 2025

ODU CS and DSC courses taught by Hong Qin

 

https://catalog.odu.edu/courses/cs/#graduatecoursestext

https://catalog.odu.edu/courses/dasc/


CS 781  AI for Health Sciences  (3 Credit Hours)  

This course explores the application of AI in health sciences, focusing on machine learning, NLP, computer vision, generative AI techniques for diagnostics, treatment planning, patient monitoring, and biomedical research. It covers precision medicine, ethical AI, and the integration of AI into practice. Students will gain a deep understanding and practical skills to develop innovative AI solutions that address real-world challenges in health sciences.

Prerequisites: Prior programming experience  
CS 782  Generative AI  (3 Credit Hours)  

This course provides a deep dive into the foundations and current advancements in generative AI. It covers key concepts such as transformer models, GANs, VAEs, LLMs, and their applications across various fields, emphasizing both theory and hands-on learning, including ethical considerations such as fairness and bias mitigation. Students will develop a comprehensive understanding of generative AI and gain practical experience.

Prerequisites: Prior programming experience  

CS 881  AI for Health Sciences  (3 Credit Hours)  

This course explores the application of AI in health sciences, focusing on machine learning, NLP, computer vision, generative AI techniques for diagnostics, treatment planning, patient monitoring, and biomedical research. It covers precision medicine, ethical AI, and the integration of AI into practice. Students will gain a deep understanding and practical skills to develop innovative AI solutions that address real-world challenges in health sciences.

Prerequisites: Prior programming experience  
CS 882  Generative AI  (3 Credit Hours)  

This course provides a deep dive into the foundations and current advancements in generative AI. It covers key concepts such as transformer models, GANs, VAEs, LLMs, and their applications across various fields, emphasizing both theory and hands-on learning, including ethical considerations such as fairness and bias mitigation. Students will develop a comprehensive understanding of generative AI and gain practical experience.

Prerequisites: Prior programming experience  

DASC 781  AI for Health Sciences  (3 Credit Hours)  

This course explores the application of AI in health sciences, focusing on machine learning, NLP, computer vision, generative AI techniques for diagnostics, treatment planning, patient monitoring, and biomedical research. It covers precision medicine, ethical AI, and the integration of AI into practice. Students will gain a deep understanding and practical skills to develop innovative AI solutions that address real-world challenges in health sciences.

Prerequisites: Prior programming experience  
DASC 782  Generative AI  (3 Credit Hours)  

This course provides a deep dive into the foundations and current advancements in generative AI. It covers key concepts such as transformer models, GANs, VAEs, LLMs, and their applications across various fields, emphasizing both theory and hands-on learning, including ethical considerations such as fairness and bias mitigation. Students will develop a comprehensive understanding of generative AI and gain practical experience.

Prerequisites: Prior programming experience  

DASC 881  AI for Health Sciences  (3 Credit Hours)  

This course explores the application of AI in health sciences, focusing on machine learning, NLP, computer vision, generative AI techniques for diagnostics, treatment planning, patient monitoring, and biomedical research. It covers precision medicine, ethical AI, and the integration of AI into practice. Students will gain a deep understanding and practical skills to develop innovative AI solutions that address real-world challenges in health sciences.

Prerequisites: Prior programming experience  
DASC 882  Generative AI  (3 Credit Hours)  

This course provides a deep dive into the foundations and current advancements in generative AI. It covers key concepts such as transformer models, GANs, VAEs, LLMs, and their applications across various fields, emphasizing both theory and hands-on learning, including ethical considerations such as fairness and bias mitigation. Students will develop a comprehensive understanding of generative AI and gain practical experience.

Prerequisites: Prior programming experience  


No comments:

Post a Comment