========
stochastic gradient descent is so called because only batch of data are used each time.
========gradient descent
# Set the learning rate: learning_rate
learning_rate = 0.01
# Calculate the predictions: preds
preds = (weights * input_data).sum()
# Calculate the error: error
error = preds - target
# Calculate the slope: slope
slope = 2 * input_data * error
# Update the weights: weights_updated
weights_updated = weights - learning_rate * slope
# Get updated predictions: preds_updated
preds_updated = (weights_updated * input_data).sum()
# Calculate updated error: error_updated
error_updated = preds_updated - target
# Print the original error
print(error)
# Print the updated error
print(error_updated)
# Import necessary modules
import keras
from keras.layers import Dense
from keras.models import Sequential
# Specify the model
n_cols = predictors.shape[1]
model = Sequential()
model.add(Dense(50, activation='relu', input_shape = (n_cols,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(1))
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
print("Loss function: " + model.loss)
# Fit the model
model.fit(predictors, target)
========================
# Import necessary modules
import keras
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical
# Convert the target to categorical: target
target = to_categorical(df.survived)
# Set up the model
model = Sequential()
# Add the first layer
model.add(Dense(32, activation='relu', input_shape=(n_cols,)))
# Add the output layer
model.add(Dense(2, activation='softmax'))
# Compile the model
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Fit the model
model.fit(predictors, target)
dead neuron versus vanishing gradient
====
No comments:
Post a Comment