R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #2013 April 2
> # analysis of metrics, scientific literacy and attitude survey
> # Hong Qin
>
> rm(list=ls())
> list.files()
[1] "analysis20130402.R" "old" "out.txt"
[4] "response20130401.csv" "Rplots.pdf"
> tb.ori = read.csv("response20130401.csv")
> str(tb.ori)
'data.frame': 196 obs. of 24 variables:
$ Timestamp : Factor w/ 196 levels "3/13/2013 14:58:00",..: 172 173 174 175 176 177 178 179 180 181 ...
$ Please.indicate.your.gender : Factor w/ 4 levels "","Do not wish to answer",..: 2 4 3 2 3 3 3 3 3 4 ...
$ Please.indicate.your.age.category : Factor w/ 8 levels "18-22","23-30",..: 1 1 3 8 5 6 1 4 3 3 ...
$ What.is.the.highest.education.that.you.received.or.are.pursing. : Factor w/ 6 levels "Bachelor Degree in Arts or equivalent",..: 2 3 3 2 3 1 3 5 6 6 ...
$ Please.indicate.the.country.in.which.you.grew.up. : Factor w/ 24 levels "","Australia",..: 24 24 24 24 24 24 24 24 24 6 ...
$ Light.is.both.a.wave.and.a.particle : Factor w/ 4 levels "","I don't know.",..: 3 3 3 4 2 4 3 4 3 3 ...
$ A.man.is.2.16.meters.tall..Is.this.person.suited.to.be.a.good.professional.basketball.player. : Factor w/ 3 levels "I don't know.",..: 3 2 2 3 2 2 1 2 3 2 ...
$ A.30.year.old.scientist.found.a.6.million.year.old.fossil..When.this.scientist.becomes.35.years.old..the.age.of.his.fossil.should.be..: Factor w/ 4 levels "","6 million and 5 years old",..: 2 2 2 4 2 4 2 4 4 2 ...
$ X.Kilo..means : Factor w/ 5 levels "","10 x","100 x",..: 4 4 3 4 2 4 2 4 4 4 ...
$ X145.mm...___.m : num 0.145 0.145 1.45 0.145 0.145 0.145 1.45 0.145 0.145 1.45 ...
$ Do.you.agree.that.organic.food.should.be.DNA.free.food. : Factor w/ 3 levels "Agree","Dis-agree",..: 3 2 2 2 2 2 1 2 2 2 ...
$ A.person.s.pant.inseam.measures.35.centimeters. : Factor w/ 4 levels "","I don't know",..: 4 3 3 3 4 3 2 3 3 3 ...
$ The.weather.forecast.shows.a.high.of.32.degrees.Celcius..what.should.you.wear. : Factor w/ 4 levels "A light jacket",..: 3 2 1 3 3 2 3 2 2 2 ...
$ What.is.an.electron.attracted.to. : Factor w/ 5 levels "","Electricity ",..: 3 5 5 5 2 5 5 5 5 5 ...
$ Early.human.once.lived.with.dinosaurs. : Factor w/ 3 levels "FALSE","I do not know.",..: 1 1 3 1 1 1 1 1 1 1 ...
$ Lasers.work.by.focusing.sound.waves : Factor w/ 3 levels "FALSE","I do not know. ",..: 3 1 1 1 1 1 2 1 3 1 ...
$ The.continents.have.been.moving.their.location.for.millions.of.years.and.will.continue.to.move. : Factor w/ 4 levels "","FALSE","I do not know. ",..: 4 4 4 4 2 4 4 4 4 4 ...
$ Antibiotics.kills.viruses.as.well.as.bacteria. : Factor w/ 3 levels "FALSE","I do not know.",..: 1 1 1 1 3 1 1 1 1 1 ...
$ Electrons.are.smaller.than.atoms : Factor w/ 4 levels "","FALSE","I do no know. ",..: 4 4 4 4 4 4 4 4 4 4 ...
$ The.center.of.the.earth.is.very.hot. : Factor w/ 3 levels "FALSE","I do not know.",..: 3 3 3 3 2 3 3 3 3 3 ...
$ My.religious.views.are.more.important.than.scientific.views. : Factor w/ 4 levels "","I do not know",..: 4 4 4 3 3 3 3 3 3 3 ...
$ For.me..in.my.daily.life..it.is.not.important.to.know.about.science. : Factor w/ 4 levels "FALSE","Maybe",..: 1 1 3 1 1 1 4 1 1 1 ...
$ Science.and.technology.are.making.our.lives.healthier..easier.and.more.comfortable. : Factor w/ 3 levels "FALSE","Not sure",..: 3 3 3 3 3 3 3 3 3 3 ...
$ The.benefits.of.science.are.greater.than.any.harmful.effects.it.may.have. : Factor w/ 3 levels "FALSE","Not sure",..: 3 3 1 2 2 3 1 2 3 3 ...
> tb = tb.ori
> #rename the columns for convenience
> names(tb) = c("time","gender", "age", "degree", "country", "light", "shaq", "fossil", "kilo", "mm",
+ "food","inseam", "weather","electronCharge","earlyHuman",
+ "laser", "continents", "antibiotics", "electronSize","earthCenter",
+ "religiousView","dailyLife","SciOnLife", "SciEffect")
>
> #visual check of the renaming
> head(tb)[1:10]
time gender age
1 3/5/2013 14:34:19 Do not wish to answer 18-22
2 3/5/2013 14:47:37 Male 18-22
3 3/5/2013 14:53:48 Female 31-40
4 3/5/2013 15:01:34 Do not wish to answer Option 5
5 3/5/2013 15:03:33 Female 51-55
6 3/5/2013 16:21:51 Female 56-60
degree country light shaq
1 Bachelor Degree in Science or equivalent United States TRUE Yes
2 High School or equivalent United States TRUE No
3 High School or equivalent United States TRUE No
4 Bachelor Degree in Science or equivalent United States Wrong Yes
5 High School or equivalent United States I don't know. No
6 Bachelor Degree in Arts or equivalent United States Wrong No
fossil kilo mm
1 6 million and 5 years old 1000 x 0.145
2 6 million and 5 years old 1000 x 0.145
3 6 million and 5 years old 100 x 1.450
4 Still about 6 million years old. 1000 x 0.145
5 6 million and 5 years old 10 x 0.145
6 Still about 6 million years old. 1000 x 0.145
> head(tb.ori)[1:10]
Timestamp Please.indicate.your.gender
1 3/5/2013 14:34:19 Do not wish to answer
2 3/5/2013 14:47:37 Male
3 3/5/2013 14:53:48 Female
4 3/5/2013 15:01:34 Do not wish to answer
5 3/5/2013 15:03:33 Female
6 3/5/2013 16:21:51 Female
Please.indicate.your.age.category
1 18-22
2 18-22
3 31-40
4 Option 5
5 51-55
6 56-60
What.is.the.highest.education.that.you.received.or.are.pursing.
1 Bachelor Degree in Science or equivalent
2 High School or equivalent
3 High School or equivalent
4 Bachelor Degree in Science or equivalent
5 High School or equivalent
6 Bachelor Degree in Arts or equivalent
Please.indicate.the.country.in.which.you.grew.up.
1 United States
2 United States
3 United States
4 United States
5 United States
6 United States
Light.is.both.a.wave.and.a.particle
1 TRUE
2 TRUE
3 TRUE
4 Wrong
5 I don't know.
6 Wrong
A.man.is.2.16.meters.tall..Is.this.person.suited.to.be.a.good.professional.basketball.player.
1 Yes
2 No
3 No
4 Yes
5 No
6 No
A.30.year.old.scientist.found.a.6.million.year.old.fossil..When.this.scientist.becomes.35.years.old..the.age.of.his.fossil.should.be..
1 6 million and 5 years old
2 6 million and 5 years old
3 6 million and 5 years old
4 Still about 6 million years old.
5 6 million and 5 years old
6 Still about 6 million years old.
X.Kilo..means X145.mm...___.m
1 1000 x 0.145
2 1000 x 0.145
3 100 x 1.450
4 1000 x 0.145
5 10 x 0.145
6 1000 x 0.145
> head(tb)[10:15]
mm food inseam weather electronCharge
1 0.145 I don't know This person is tall A winter coat Negative charge
2 0.145 Dis-agree This person is short A Short sleeve shirt Positive charge
3 1.450 Dis-agree This person is short A light jacket Positive charge
4 0.145 Dis-agree This person is short A winter coat Positive charge
5 0.145 Dis-agree This person is tall A winter coat Electricity 
6 0.145 Dis-agree This person is short A Short sleeve shirt Positive charge
earlyHuman
1 FALSE
2 FALSE
3 TRUE
4 FALSE
5 FALSE
6 FALSE
> head(tb.ori)[10:15]
X145.mm...___.m Do.you.agree.that.organic.food.should.be.DNA.free.food.
1 0.145 I don't know
2 0.145 Dis-agree
3 1.450 Dis-agree
4 0.145 Dis-agree
5 0.145 Dis-agree
6 0.145 Dis-agree
A.person.s.pant.inseam.measures.35.centimeters.
1 This person is tall
2 This person is short
3 This person is short
4 This person is short
5 This person is tall
6 This person is short
The.weather.forecast.shows.a.high.of.32.degrees.Celcius..what.should.you.wear.
1 A winter coat
2 A Short sleeve shirt
3 A light jacket
4 A winter coat
5 A winter coat
6 A Short sleeve shirt
What.is.an.electron.attracted.to. Early.human.once.lived.with.dinosaurs.
1 Negative charge FALSE
2 Positive charge FALSE
3 Positive charge TRUE
4 Positive charge FALSE
5 Electricity  FALSE
6 Positive charge FALSE
> head(tb)[16:20]
laser continents antibiotics electronSize earthCenter
1 TRUE TRUE FALSE True  TRUE
2 FALSE TRUE FALSE True  TRUE
3 FALSE TRUE FALSE True  TRUE
4 FALSE TRUE FALSE True  TRUE
5 FALSE FALSE TRUE True  I do not know.
6 FALSE TRUE FALSE True  TRUE
> head(tb.ori)[16:20]
Lasers.work.by.focusing.sound.waves
1 TRUE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE
The.continents.have.been.moving.their.location.for.millions.of.years.and.will.continue.to.move.
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 FALSE
6 TRUE
Antibiotics.kills.viruses.as.well.as.bacteria.
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 TRUE
6 FALSE
Electrons.are.smaller.than.atoms The.center.of.the.earth.is.very.hot.
1 True  TRUE
2 True  TRUE
3 True  TRUE
4 True  TRUE
5 True  I do not know.
6 True  TRUE
> head(tb)[21:24]
religiousView dailyLife SciOnLife SciEffect
1 Yes FALSE TRUE TRUE
2 Yes FALSE TRUE TRUE
3 Yes Neutral TRUE FALSE
4 No FALSE TRUE Not sure
5 No FALSE TRUE Not sure
6 No FALSE TRUE TRUE
> head(tb.ori)[21:24]
My.religious.views.are.more.important.than.scientific.views.
1 Yes
2 Yes
3 Yes
4 No
5 No
6 No
For.me..in.my.daily.life..it.is.not.important.to.know.about.science.
1 FALSE
2 FALSE
3 Neutral
4 FALSE
5 FALSE
6 FALSE
Science.and.technology.are.making.our.lives.healthier..easier.and.more.comfortable.
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 TRUE
6 TRUE
The.benefits.of.science.are.greater.than.any.harmful.effects.it.may.have.
1 TRUE
2 TRUE
3 FALSE
4 Not sure
5 Not sure
6 TRUE
>
> head(tb)
time gender age
1 3/5/2013 14:34:19 Do not wish to answer 18-22
2 3/5/2013 14:47:37 Male 18-22
3 3/5/2013 14:53:48 Female 31-40
4 3/5/2013 15:01:34 Do not wish to answer Option 5
5 3/5/2013 15:03:33 Female 51-55
6 3/5/2013 16:21:51 Female 56-60
degree country light shaq
1 Bachelor Degree in Science or equivalent United States TRUE Yes
2 High School or equivalent United States TRUE No
3 High School or equivalent United States TRUE No
4 Bachelor Degree in Science or equivalent United States Wrong Yes
5 High School or equivalent United States I don't know. No
6 Bachelor Degree in Arts or equivalent United States Wrong No
fossil kilo mm food
1 6 million and 5 years old 1000 x 0.145 I don't know
2 6 million and 5 years old 1000 x 0.145 Dis-agree
3 6 million and 5 years old 100 x 1.450 Dis-agree
4 Still about 6 million years old. 1000 x 0.145 Dis-agree
5 6 million and 5 years old 10 x 0.145 Dis-agree
6 Still about 6 million years old. 1000 x 0.145 Dis-agree
inseam weather electronCharge earlyHuman laser
1 This person is tall A winter coat Negative charge FALSE TRUE
2 This person is short A Short sleeve shirt Positive charge FALSE FALSE
3 This person is short A light jacket Positive charge TRUE FALSE
4 This person is short A winter coat Positive charge FALSE FALSE
5 This person is tall A winter coat Electricity  FALSE FALSE
6 This person is short A Short sleeve shirt Positive charge FALSE FALSE
continents antibiotics electronSize earthCenter religiousView dailyLife
1 TRUE FALSE True  TRUE Yes FALSE
2 TRUE FALSE True  TRUE Yes FALSE
3 TRUE FALSE True  TRUE Yes Neutral
4 TRUE FALSE True  TRUE No FALSE
5 FALSE TRUE True  I do not know. No FALSE
6 TRUE FALSE True  TRUE No FALSE
SciOnLife SciEffect
1 TRUE TRUE
2 TRUE TRUE
3 TRUE FALSE
4 TRUE Not sure
5 TRUE Not sure
6 TRUE TRUE
> table(tb$gender)
Do not wish to answer Female
1 3 107
Male
85
> tb$gender[tb$gender=='']='Do not wish to answer'
>
> table(tb$age)
18-22 23-30 31-40
75 32 23
41-50 51-55 56-60
18 12 15
More than 60 years old Option 5
20 1
> tb$age[tb$age=="Option 5"] = NA
> table(tb$age, tb$gender)
Do not wish to answer Female Male
18-22 0 1 59 15
23-30 0 0 20 12
31-40 0 0 9 14
41-50 0 0 7 11
51-55 0 1 2 9
56-60 0 1 4 10
More than 60 years old 0 0 6 14
Option 5 0 0 0 0
>
> for( i in 5:length(tb[, 1])) {
+ for( j in 5:length(tb[1, ])) {
+ if ( is.na(tb[i, j]) ) {
+ # tb[i,j] = NA #do nothing
+ } else if (tb[i,j]=='') {
+ tb[i,j] = NA
+ }
+ }
+ }
>
> summary(tb)
time gender
3/13/2013 14:58:00: 1 : 0
3/18/2013 12:21:55: 1 Do not wish to answer: 4
3/25/2013 15:19:50: 1 Female :107
3/25/2013 15:29:20: 1 Male : 85
3/25/2013 15:29:24: 1
3/25/2013 16:41:29: 1
(Other) :190
age degree
18-22 :75 Bachelor Degree in Arts or equivalent :38
23-30 :32 Bachelor Degree in Science or equivalent:39
31-40 :23 High School or equivalent :58
More than 60 years old:20 M.D. or equivalent : 1
41-50 :18 Master Degree or equivalent :25
(Other) :27 Ph.D. or equivalent :35
NA's : 1
country light shaq
United States :155 : 0 I don't know.: 27
United Kingdom: 8 I don't know.: 9 No : 29
Australia : 3 TRUE :151 Yes :140
Canada : 3 Wrong : 34
China : 2 NA's : 2
(Other) : 23
NA's : 2
fossil kilo mm
: 0 : 0 Min. : 0.01
6 million and 5 years old : 67 10 x : 6 1st Qu.: 0.14
I don't know : 8 100 x : 13 Median : 0.14
Still about 6 million years old.:120 1000 x:173 Mean : 1495.29
NA's : 1 5 x : 1 3rd Qu.: 1.12
NA's : 3 Max. :145000.00
NA's :2
food inseam weather
Agree : 33 : 0 A light jacket : 25
Dis-agree :118 I don't know : 32 A Short sleeve shirt:131
I don't know: 45 This person is short:127 A winter coat : 26
This person is tall : 36 I don't know : 14
NA's : 1
electronCharge earlyHuman laser
: 0 FALSE :153 FALSE :134
Electricity  : 5 I do not know.: 16 I do not know. : 37
Negative charge: 29 TRUE : 27 TRUE : 25
Neutron : 22
Positive charge:139
NA's : 1
continents antibiotics electronSize
: 0 FALSE :133 : 0
FALSE : 4 I do not know.: 11 FALSE : 33
I do not know. : 7 TRUE : 52 I do no know. : 14
TRUE :184 True  :148
NA's : 1 NA's : 1
earthCenter religiousView dailyLife SciOnLife
FALSE : 6 : 0 FALSE :138 FALSE : 8
I do not know.: 9 I do not know: 15 Maybe : 12 Not sure: 18
TRUE :181 No :111 Neutral: 25 TRUE :170
Yes : 68 TRUE : 21
NA's : 2
SciEffect
FALSE : 31
Not sure: 56
TRUE :109
>
> table(tb$weather)
A light jacket A Short sleeve shirt A winter coat
25 131 26
I don't know
14
> tbGenWeather = table(tb$gender, tb$weather)
> tbGenWeather
A light jacket A Short sleeve shirt A winter coat
0 0 0
Do not wish to answer 1 1 2
Female 21 59 17
Male 3 71 7
I don't know
0
Do not wish to answer 0
Female 10
Male 4
> fisher.test( tbGenWeather)
Fisher's Exact Test for Count Data
data: tbGenWeather
p-value = 9.176e-05
alternative hypothesis: two.sided
>
> head(tb)
time gender age
1 3/5/2013 14:34:19 Do not wish to answer 18-22
2 3/5/2013 14:47:37 Male 18-22
3 3/5/2013 14:53:48 Female 31-40
4 3/5/2013 15:01:34 Do not wish to answer <NA>
5 3/5/2013 15:03:33 Female 51-55
6 3/5/2013 16:21:51 Female 56-60
degree country light shaq
1 Bachelor Degree in Science or equivalent United States TRUE Yes
2 High School or equivalent United States TRUE No
3 High School or equivalent United States TRUE No
4 Bachelor Degree in Science or equivalent United States Wrong Yes
5 High School or equivalent United States I don't know. No
6 Bachelor Degree in Arts or equivalent United States Wrong No
fossil kilo mm food
1 6 million and 5 years old 1000 x 0.145 I don't know
2 6 million and 5 years old 1000 x 0.145 Dis-agree
3 6 million and 5 years old 100 x 1.450 Dis-agree
4 Still about 6 million years old. 1000 x 0.145 Dis-agree
5 6 million and 5 years old 10 x 0.145 Dis-agree
6 Still about 6 million years old. 1000 x 0.145 Dis-agree
inseam weather electronCharge earlyHuman laser
1 This person is tall A winter coat Negative charge FALSE TRUE
2 This person is short A Short sleeve shirt Positive charge FALSE FALSE
3 This person is short A light jacket Positive charge TRUE FALSE
4 This person is short A winter coat Positive charge FALSE FALSE
5 This person is tall A winter coat Electricity  FALSE FALSE
6 This person is short A Short sleeve shirt Positive charge FALSE FALSE
continents antibiotics electronSize earthCenter religiousView dailyLife
1 TRUE FALSE True  TRUE Yes FALSE
2 TRUE FALSE True  TRUE Yes FALSE
3 TRUE FALSE True  TRUE Yes Neutral
4 TRUE FALSE True  TRUE No FALSE
5 FALSE TRUE True  I do not know. No FALSE
6 TRUE FALSE True  TRUE No FALSE
SciOnLife SciEffect
1 TRUE TRUE
2 TRUE TRUE
3 TRUE FALSE
4 TRUE Not sure
5 TRUE Not sure
6 TRUE TRUE
> names(tb)
[1] "time" "gender" "age" "degree"
[5] "country" "light" "shaq" "fossil"
[9] "kilo" "mm" "food" "inseam"
[13] "weather" "electronCharge" "earlyHuman" "laser"
[17] "continents" "antibiotics" "electronSize" "earthCenter"
[21] "religiousView" "dailyLife" "SciOnLife" "SciEffect"
> metrics = c("shaq", "kilo", "mm", "inseam", "weather")
> sciLiteracy = c("light", "fossil", "food", "electronCharge",
+ "earlyHuman", "laser", "continents", "antibiotics", "electronSize", "earthCenter")
> sciAttitude = c("religiousView", "dailyLife", "SciOnLife", "SciEffect")
>
> ##### create a second table, convert factors to numerics
> tb2 = tb[,2:5] #this is the score table
>
> ###country
> tb2$country = 0
> tb2$country[tb$country=='United States'] = 1
> table( tb2$country )
0 1
41 155
> table( tb$country )
Australia Bahamas Canada
0 3 1 3
China Croatia France Ghana
2 1 1 1
Guyana India Jamaica Kenya
1 1 1 2
Lebanon Mexico Norway Poland
1 1 1 2
Russian Federation Rwanda Senegal South Africa
2 2 1 2
Syria Trinidad & Tobago United Kingdom United States
1 1 8 155
>
> ########calculate the metric scores
> tb2$shaq = 0.5
> tb2$shaq[ tb$shaq=='Yes' ] = 1
> tb2$shaq[ tb$shaq=='No' ] = 0
> table(tb2$shaq)
0 0.5 1
29 27 140
>
> tb2$kilo = 0
> tb2$kilo[ tb$kilo=='1000 x' ] = 1
> table(tb2$kilo)
0 1
23 173
>
> tb2$mm=0
> tb2$mm[ tb$mm==0.145 ] = 1
> table(tb2$mm)
0 1
79 117
> table(tb$mm)
0.0145 0.145 1.45 145000
28 117 47 2
>
> tb2$inseam = 0.5
> tb2$inseam[tb$inseam=="This person is short"] = 1
> tb2$inseam[tb$inseam=="This person is tall"] = 0
> table(tb2$inseam)
0 0.5 1
36 33 127
>
> tb2$weather = 0.5
> tb2$weather[tb$weather=="A Short sleeve shirt"] = 1
> tb2$weather[tb$weather=="A winter coat"] = 0
> table(tb$weather)
A light jacket A Short sleeve shirt A winter coat
25 131 26
I don't know
14
> table(tb2$weather)
0 0.5 1
26 39 131
>
> #testing the grep function
> #tb$weather[ grep("shirt", tb$weather) ]
>
> #######calcualte the science attitude scores
> #sciAttitude = c("religiousView", "dailyLife", "SciOnLife", "SciEffect")
>
> tb2$religiousView = 0.5
> tb2$religiousView[grep("No", tb$religiousView)] = 1
> tb2$religiousView[grep("Yes", tb$religiousView)] = 0
> table(tb2$religiousView)
0 0.5 1
68 17 111
>
> tb2$dailyLife = 0.5
> tb2$dailyLife[ tb$dailyLife=='TRUE' ] = 0
> tb2$dailyLife[ tb$dailyLife=='FALSE' ] = 1
> table(tb2$dailyLife)
0 0.5 1
21 37 138
>
> tb2$SciOnLife = 0.5
> tb2$SciOnLife[ tb$SciOnLife=='TRUE' ] = 1
> tb2$SciOnLife[ tb$SciOnLife=='FALSE' ] = 0
> table(tb2$SciOnLife)
0 0.5 1
8 18 170
>
> tb2$SciEffect = 0.5
> tb2$SciEffect[ tb$SciEffect=='TRUE' ] = 1
> tb2$SciEffect[ tb$SciEffect=='FALSE' ] = 0
> table( tb2$SciEffect )
0 0.5 1
31 56 109
>
> ###########calculate scientific literacy
> #sciLiteracy = c("light", "fossil", "food", "electronCharge",
> # "earlyHuman", "laser", "continents", "antibiotics", "electronSize", "earthCenter")
> tb2$light = 0.5
> tb2$light[ tb$light=='TRUE' ] =1
> tb2$light[ tb$light=='Wrong' ] =0
> table(tb$light)
I don't know. TRUE Wrong
0 9 151 34
> table(tb2$light)
0 0.5 1
34 11 151
>
> tb2$fossil = 0.5
> tb2$fossil[ tb$fossil=='6 million and 5 years old' ] = 0
> tb2$fossil[grep('Still', tb$fossil)] = 1;
> table(tb$fossil)
6 million and 5 years old
0 67
I don't know Still about 6 million years old.
8 120
> table(tb2$fossil)
0 0.5 1
67 9 120
>
> tb2$food = 0.5
> tb2$food[ tb$food=='Dis-agree' ] = 1
> tb2$food[grep('Agree', tb$food)] = 0;
> table(tb$food)
Agree Dis-agree I don't know
33 118 45
> table(tb2$food)
0 0.5 1
33 45 118
>
> tb2$electronCharge = 0
> tb2$electronCharge[grep('Positive', tb$electronCharge)] = 1;
> table(tb$electronCharge)
Electricity  Negative charge Neutron Positive charge
0 5 29 22 139
> table(tb2$electronCharge)
0 1
57 139
>
> tb2$earlyHuman = 0.5
> tb2$earlyHuman[grep('TRUE', tb$earlyHuman)] = 0;
> tb2$earlyHuman[grep('FALSE', tb$earlyHuman)] = 1;
> table(tb$earlyHuman)
FALSE I do not know. TRUE
153 16 27
> table(tb2$earlyHuman)
0 0.5 1
27 16 153
>
> tb2$earlyHuman = 0.5
> tb2$earlyHuman[grep('TRUE', tb$earlyHuman)] = 0;
> tb2$earlyHuman[grep('FALSE', tb$earlyHuman)] = 1;
> table(tb$earlyHuman)
FALSE I do not know. TRUE
153 16 27
> table(tb2$earlyHuman)
0 0.5 1
27 16 153
>
> tb2$laser = 0.5
> tb2$laser[grep('TRUE', tb$laser)] = 0;
> tb2$laser[grep('FALSE', tb$laser)] = 1;
> table(tb$laser)
FALSE I do not know. TRUE
134 37 25
> table(tb2$laser)
0 0.5 1
25 37 134
>
> tb2$continents = 0.5
> tb2$continents[grep('TRUE', tb$continents)] = 1;
> tb2$continents[grep('FALSE', tb$continents)] = 0;
> table(tb$continents)
FALSE I do not know. TRUE
0 4 7 184
> table(tb2$continents)
0 0.5 1
4 8 184
>
> tb2$antibiotics = 0.5
> tb2$antibiotics[grep('TRUE', tb$antibiotics)] = 0;
> tb2$antibiotics[grep('FALSE', tb$antibiotics)] = 1;
> table(tb$antibiotics)
FALSE I do not know. TRUE
133 11 52
> table(tb2$antibiotics)
0 0.5 1
52 11 133
>
> tb2$electronSize = 0.5
> tb2$electronSize[grep('True', tb$electronSize)] = 1;
> tb2$electronSize[grep('FALSE', tb$electronSize)] = 0;
> table(tb$electronSize)
FALSE I do no know. True 
0 33 14 148
> table(tb2$electronSize)
0 0.5 1
33 15 148
>
> tb2$earthCenter = 0.5
> tb2$earthCenter[grep('TRUE', tb$earthCenter)] = 1;
> tb2$earthCenter[grep('FALSE', tb$earthCenter)] = 0;
> table(tb$earthCenter)
FALSE I do not know. TRUE
6 9 181
> table(tb2$earthCenter)
0 0.5 1
6 9 181
>
> #sciLiteracy = c("light", "fossil", "food", "electronCharge",
> # "earlyHuman", "laser", "continents", "antibiotics", "electronSize", "earthCenter")
>
> tb2$SciLitScore = apply( tb2[, sciLiteracy], MARGIN=1, FUN=sum ) #by row
> hist(tb2$SciLitScore, br=20)
>
> #sciAttitude = c("religiousView", "dailyLife", "SciOnLife", "SciEffect")
> #Attitude total score
> tb2$SciAttitude = apply( tb2[, sciAttitude], MARGIN=1, FUN=sum)
>
> #metrics = c("shaq", "kilo", "mm", "inseam", "weather")
> #metric total score
> tb2$metric = apply( tb2[, metrics], MARGIN=1, FUN=sum )
> hist(tb2$metric, br=20)
>
> summary(tb)
time gender
3/13/2013 14:58:00: 1 : 0
3/18/2013 12:21:55: 1 Do not wish to answer: 4
3/25/2013 15:19:50: 1 Female :107
3/25/2013 15:29:20: 1 Male : 85
3/25/2013 15:29:24: 1
3/25/2013 16:41:29: 1
(Other) :190
age degree
18-22 :75 Bachelor Degree in Arts or equivalent :38
23-30 :32 Bachelor Degree in Science or equivalent:39
31-40 :23 High School or equivalent :58
More than 60 years old:20 M.D. or equivalent : 1
41-50 :18 Master Degree or equivalent :25
(Other) :27 Ph.D. or equivalent :35
NA's : 1
country light shaq
United States :155 : 0 I don't know.: 27
United Kingdom: 8 I don't know.: 9 No : 29
Australia : 3 TRUE :151 Yes :140
Canada : 3 Wrong : 34
China : 2 NA's : 2
(Other) : 23
NA's : 2
fossil kilo mm
: 0 : 0 Min. : 0.01
6 million and 5 years old : 67 10 x : 6 1st Qu.: 0.14
I don't know : 8 100 x : 13 Median : 0.14
Still about 6 million years old.:120 1000 x:173 Mean : 1495.29
NA's : 1 5 x : 1 3rd Qu.: 1.12
NA's : 3 Max. :145000.00
NA's :2
food inseam weather
Agree : 33 : 0 A light jacket : 25
Dis-agree :118 I don't know : 32 A Short sleeve shirt:131
I don't know: 45 This person is short:127 A winter coat : 26
This person is tall : 36 I don't know : 14
NA's : 1
electronCharge earlyHuman laser
: 0 FALSE :153 FALSE :134
Electricity  : 5 I do not know.: 16 I do not know. : 37
Negative charge: 29 TRUE : 27 TRUE : 25
Neutron : 22
Positive charge:139
NA's : 1
continents antibiotics electronSize
: 0 FALSE :133 : 0
FALSE : 4 I do not know.: 11 FALSE : 33
I do not know. : 7 TRUE : 52 I do no know. : 14
TRUE :184 True  :148
NA's : 1 NA's : 1
earthCenter religiousView dailyLife SciOnLife
FALSE : 6 : 0 FALSE :138 FALSE : 8
I do not know.: 9 I do not know: 15 Maybe : 12 Not sure: 18
TRUE :181 No :111 Neutral: 25 TRUE :170
Yes : 68 TRUE : 21
NA's : 2
SciEffect
FALSE : 31
Not sure: 56
TRUE :109
> summary(tb2)
gender age
: 0 18-22 :75
Do not wish to answer: 4 23-30 :32
Female :107 31-40 :23
Male : 85 More than 60 years old:20
41-50 :18
(Other) :27
NA's : 1
degree country
Bachelor Degree in Arts or equivalent :38 Min. :0.0000
Bachelor Degree in Science or equivalent:39 1st Qu.:1.0000
High School or equivalent :58 Median :1.0000
M.D. or equivalent : 1 Mean :0.7908
Master Degree or equivalent :25 3rd Qu.:1.0000
Ph.D. or equivalent :35 Max. :1.0000
shaq kilo mm inseam
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.5000 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.5000
Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
Mean :0.7832 Mean :0.8827 Mean :0.5969 Mean :0.7321
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
weather religiousView dailyLife SciOnLife
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.5000 1st Qu.:0.0000 1st Qu.:0.5000 1st Qu.:1.0000
Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
Mean :0.7679 Mean :0.6097 Mean :0.7985 Mean :0.9133
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
SciEffect light fossil food
Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.500 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:0.5000
Median :1.000 Median :1.0000 Median :1.0000 Median :1.0000
Mean :0.699 Mean :0.7985 Mean :0.6352 Mean :0.7168
3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
electronCharge earlyHuman laser continents
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:0.5000 1st Qu.:1.0000
Median :1.0000 Median :1.0000 Median :1.0000 Median :1.0000
Mean :0.7092 Mean :0.8214 Mean :0.7781 Mean :0.9592
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
antibiotics electronSize earthCenter SciLitScore
Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. : 3.000
1st Qu.:0.0000 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.: 6.500
Median :1.0000 Median :1.0000 Median :1.0000 Median : 8.000
Mean :0.7066 Mean :0.7934 Mean :0.9464 Mean : 7.865
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.: 9.000
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :10.000
SciAttitude metric
Min. :1.00 Min. :1.000
1st Qu.:2.50 1st Qu.:3.000
Median :3.00 Median :4.000
Mean :3.02 Mean :3.763
3rd Qu.:4.00 3rd Qu.:5.000
Max. :4.00 Max. :5.000
> str(tb2);
'data.frame': 196 obs. of 26 variables:
$ gender : Factor w/ 4 levels "","Do not wish to answer",..: 2 4 3 2 3 3 3 3 3 4 ...
$ age : Factor w/ 8 levels "18-22","23-30",..: 1 1 3 NA 5 6 1 4 3 3 ...
$ degree : Factor w/ 6 levels "Bachelor Degree in Arts or equivalent",..: 2 3 3 2 3 1 3 5 6 6 ...
$ country : num 1 1 1 1 1 1 1 1 1 0 ...
$ shaq : num 1 0 0 1 0 0 0.5 0 1 0 ...
$ kilo : num 1 1 0 1 0 1 0 1 1 1 ...
$ mm : num 1 1 0 1 1 1 0 1 1 0 ...
$ inseam : num 0 1 1 1 0 1 0.5 1 1 1 ...
$ weather : num 0 1 0.5 0 0 1 0 1 1 1 ...
$ religiousView : num 0 0 0 1 1 1 1 1 1 1 ...
$ dailyLife : num 1 1 0.5 1 1 1 0 1 1 1 ...
$ SciOnLife : num 1 1 1 1 1 1 1 1 1 1 ...
$ SciEffect : num 1 1 0 0.5 0.5 1 0 0.5 1 1 ...
$ light : num 1 1 1 0 0.5 0 1 0 1 1 ...
$ fossil : num 0 0 0 1 0 1 0 1 1 0 ...
$ food : num 0.5 1 1 1 1 1 0 1 1 1 ...
$ electronCharge: num 0 1 1 1 0 1 1 1 1 1 ...
$ earlyHuman : num 1 1 0 1 1 1 1 1 1 1 ...
$ laser : num 0 1 1 1 1 1 0.5 1 0 1 ...
$ continents : num 1 1 1 1 0 1 1 1 1 1 ...
$ antibiotics : num 1 1 1 1 0 1 1 1 1 1 ...
$ electronSize : num 1 1 1 1 1 1 1 1 1 1 ...
$ earthCenter : num 1 1 1 1 0.5 1 1 1 1 1 ...
$ SciLitScore : num 6.5 9 8 9 5 9 7.5 9 9 9 ...
$ SciAttitude : num 3 3 1.5 3.5 3.5 4 2 3.5 4 4 ...
$ metric : num 3 4 1.5 4 1 4 1 4 5 3 ...
> str(tb)
'data.frame': 196 obs. of 24 variables:
$ time : Factor w/ 196 levels "3/13/2013 14:58:00",..: 172 173 174 175 176 177 178 179 180 181 ...
$ gender : Factor w/ 4 levels "","Do not wish to answer",..: 2 4 3 2 3 3 3 3 3 4 ...
$ age : Factor w/ 8 levels "18-22","23-30",..: 1 1 3 NA 5 6 1 4 3 3 ...
$ degree : Factor w/ 6 levels "Bachelor Degree in Arts or equivalent",..: 2 3 3 2 3 1 3 5 6 6 ...
$ country : Factor w/ 24 levels "","Australia",..: 24 24 24 24 24 24 24 24 24 6 ...
$ light : Factor w/ 4 levels "","I don't know.",..: 3 3 3 4 2 4 3 4 3 3 ...
$ shaq : Factor w/ 3 levels "I don't know.",..: 3 2 2 3 2 2 1 2 3 2 ...
$ fossil : Factor w/ 4 levels "","6 million and 5 years old",..: 2 2 2 4 2 4 2 4 4 2 ...
$ kilo : Factor w/ 5 levels "","10 x","100 x",..: 4 4 3 4 2 4 2 4 4 4 ...
$ mm : num 0.145 0.145 1.45 0.145 0.145 0.145 1.45 0.145 0.145 1.45 ...
$ food : Factor w/ 3 levels "Agree","Dis-agree",..: 3 2 2 2 2 2 1 2 2 2 ...
$ inseam : Factor w/ 4 levels "","I don't know",..: 4 3 3 3 4 3 2 3 3 3 ...
$ weather : Factor w/ 4 levels "A light jacket",..: 3 2 1 3 3 2 3 2 2 2 ...
$ electronCharge: Factor w/ 5 levels "","Electricity ",..: 3 5 5 5 2 5 5 5 5 5 ...
$ earlyHuman : Factor w/ 3 levels "FALSE","I do not know.",..: 1 1 3 1 1 1 1 1 1 1 ...
$ laser : Factor w/ 3 levels "FALSE","I do not know. ",..: 3 1 1 1 1 1 2 1 3 1 ...
$ continents : Factor w/ 4 levels "","FALSE","I do not know. ",..: 4 4 4 4 2 4 4 4 4 4 ...
$ antibiotics : Factor w/ 3 levels "FALSE","I do not know.",..: 1 1 1 1 3 1 1 1 1 1 ...
$ electronSize : Factor w/ 4 levels "","FALSE","I do no know. ",..: 4 4 4 4 4 4 4 4 4 4 ...
$ earthCenter : Factor w/ 3 levels "FALSE","I do not know.",..: 3 3 3 3 2 3 3 3 3 3 ...
$ religiousView : Factor w/ 4 levels "","I do not know",..: 4 4 4 3 3 3 3 3 3 3 ...
$ dailyLife : Factor w/ 4 levels "FALSE","Maybe",..: 1 1 3 1 1 1 4 1 1 1 ...
$ SciOnLife : Factor w/ 3 levels "FALSE","Not sure",..: 3 3 3 3 3 3 3 3 3 3 ...
$ SciEffect : Factor w/ 3 levels "FALSE","Not sure",..: 3 3 1 2 2 3 1 2 3 3 ...
>
> pairs(tb2[, c("metric", "SciLitScore", "SciAttitude")])
> summary(lm(tb2$SciLitScore ~ tb2$metric )) #significant
Call:
lm(formula = tb2$SciLitScore ~ tb2$metric)
Residuals:
Min 1Q Median 3Q Max
-3.8633 -0.8633 0.1367 1.1367 3.5579
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.82796 0.36510 13.224 < 2e-16 ***
tb2$metric 0.80708 0.09289 8.688 1.52e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.477 on 194 degrees of freedom
Multiple R-squared: 0.2801, Adjusted R-squared: 0.2764
F-statistic: 75.49 on 1 and 194 DF, p-value: 1.524e-15
> summary(lm(tb2$SciAttitude ~ tb2$metric )) #significant
Call:
lm(formula = tb2$SciAttitude ~ tb2$metric)
Residuals:
Min 1Q Median 3Q Max
-2.0931 -0.4802 0.1004 0.6004 1.3263
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.86726 0.18759 9.954 < 2e-16 ***
tb2$metric 0.30646 0.04773 6.421 1.02e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7587 on 194 degrees of freedom
Multiple R-squared: 0.1753, Adjusted R-squared: 0.171
F-statistic: 41.23 on 1 and 194 DF, p-value: 1.018e-09
> summary(lm(tb2$SciAttitude ~ tb2$SciLitScore + tb2$metric )) #significant
Call:
lm(formula = tb2$SciAttitude ~ tb2$SciLitScore + tb2$metric)
Residuals:
Min 1Q Median 3Q Max
-1.99696 -0.47506 0.08768 0.59403 1.35597
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.64149 0.25826 6.356 1.46e-09 ***
tb2$SciLitScore 0.04676 0.03683 1.270 0.206
tb2$metric 0.26872 0.05616 4.785 3.40e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7575 on 193 degrees of freedom
Multiple R-squared: 0.1821, Adjusted R-squared: 0.1736
F-statistic: 21.49 on 2 and 193 DF, p-value: 3.761e-09
> ## metric -> SciAttitude and SciLitScore
>
> summary(lm(tb2$SciLitScore ~ tb2$metric + tb2$age + tb2$gender + tb2$country )) #significant
Call:
lm(formula = tb2$SciLitScore ~ tb2$metric + tb2$age + tb2$gender +
tb2$country)
Residuals:
Min 1Q Median 3Q Max
-3.5596 -0.9806 0.1084 1.0762 2.8657
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6267 0.9216 6.105 5.95e-09 ***
tb2$metric 0.6897 0.1009 6.832 1.19e-10 ***
tb2$age23-30 0.6247 0.3052 2.046 0.04213 *
tb2$age31-40 1.0488 0.3630 2.889 0.00433 **
tb2$age41-50 0.4278 0.3944 1.085 0.27946
tb2$age51-55 0.7283 0.4777 1.525 0.12909
tb2$age56-60 -0.1232 0.4323 -0.285 0.77601
tb2$ageMore than 60 years old 0.5206 0.3792 1.373 0.17149
tb2$genderFemale -1.1432 0.8633 -1.324 0.18706
tb2$genderMale -0.6237 0.8623 -0.723 0.47042
tb2$country 0.2313 0.2686 0.861 0.39029
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.428 on 184 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.3602, Adjusted R-squared: 0.3254
F-statistic: 10.36 on 10 and 184 DF, p-value: 8.714e-14
> summary(lm(tb2$SciLitScore ~ tb2$metric + tb2$age + tb2$gender + tb2$country + tb2$SciAttitude )) #significant
Call:
lm(formula = tb2$SciLitScore ~ tb2$metric + tb2$age + tb2$gender +
tb2$country + tb2$SciAttitude)
Residuals:
Min 1Q Median 3Q Max
-3.5702 -0.9920 0.0905 1.0577 2.8572
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.58235 0.94501 5.907 1.66e-08 ***
tb2$metric 0.68266 0.10598 6.441 1.02e-09 ***
tb2$age23-30 0.61666 0.30810 2.001 0.04682 *
tb2$age31-40 1.04196 0.36524 2.853 0.00483 **
tb2$age41-50 0.42584 0.39547 1.077 0.28299
tb2$age51-55 0.71218 0.48430 1.471 0.14313
tb2$age56-60 -0.13642 0.43747 -0.312 0.75552
tb2$ageMore than 60 years old 0.50055 0.39054 1.282 0.20157
tb2$genderFemale -1.16071 0.86905 -1.336 0.18333
tb2$genderMale -0.65142 0.87337 -0.746 0.45671
tb2$country 0.23106 0.26929 0.858 0.39201
tb2$SciAttitude 0.03283 0.14661 0.224 0.82303
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.432 on 183 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.3603, Adjusted R-squared: 0.3219
F-statistic: 9.371 on 11 and 183 DF, p-value: 2.844e-13
>
> summary(lm(tb2$SciAttitude ~ tb2$metric + tb2$age + tb2$gender + tb2$country )) #significant
Call:
lm(formula = tb2$SciAttitude ~ tb2$metric + tb2$age + tb2$gender +
tb2$country)
Residuals:
Min 1Q Median 3Q Max
-1.9827 -0.4279 0.1154 0.5238 1.4062
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.351907 0.464635 2.910 0.00407 **
tb2$metric 0.214443 0.050894 4.213 3.93e-05 ***
tb2$age23-30 0.243695 0.153886 1.584 0.11500
tb2$age31-40 0.208247 0.183022 1.138 0.25667
tb2$age41-50 0.058699 0.198815 0.295 0.76814
tb2$age51-55 0.490047 0.240836 2.035 0.04331 *
tb2$age56-60 0.402791 0.217971 1.848 0.06622 .
tb2$ageMore than 60 years old 0.609465 0.191176 3.188 0.00168 **
tb2$genderFemale 0.532760 0.435236 1.224 0.22249
tb2$genderMale 0.843844 0.434750 1.941 0.05379 .
tb2$country 0.007119 0.135413 0.053 0.95813
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7199 on 184 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.2946, Adjusted R-squared: 0.2562
F-statistic: 7.684 on 10 and 184 DF, p-value: 3.169e-10
>
> ########test
> testTwoFactorTb2 = function( fac1, fac2) {
+ tbTwo = table( tb2[,fac1], tb2[,fac2] )
+ print(tbTwo)
+ f = fisher.test(tbTwo)
+ }
>
> #metrics = c("shaq", "kilo", "mm", "inseam", "weather")
> #sciLiteracy = c("light", "fossil", "food", "electronCharge",
> # "earlyHuman", "laser", "continents", "antibiotics", "electronSize", "earthCenter")
> #sciAttitude = c("religiousView", "dailyLife", "SciOnLife", "SciEffect")
>
> f = testTwoFactorTb2( "shaq", "religiousView"); f
0 0.5 1
0 15 1 13
0.5 11 4 12
1 42 12 86
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.09939
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "shaq", "dailyLife"); f
0 0.5 1
0 2 6 21
0.5 3 10 14
1 16 21 103
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.1099
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "shaq", "SciOnLife"); f
0 0.5 1
0 2 0 27
0.5 0 3 24
1 6 15 119
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.2275
alternative hypothesis: two.sided
>
> f = testTwoFactorTb2( "shaq", "SciEffect"); f #significant effect!!!!
0 0.5 1
0 7 9 13
0.5 7 12 8
1 17 35 88
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.009812
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "kilo", "SciEffect"); f #significant effect!!!
0 0.5 1
0 8 7 8
1 23 49 101
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.02352
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "mm", "SciEffect"); f #significant effect!!!
0 0.5 1
0 20 22 37
1 11 34 72
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.009951
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "inseam", "SciEffect"); f #significant effect!!!
0 0.5 1
0 9 7 20
0.5 8 14 11
1 14 35 78
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.01253
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "weather", "SciEffect"); f #p=0.078
0 0.5 1
0 6 10 10
0.5 10 9 20
1 15 37 79
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.07768
alternative hypothesis: two.sided
> f = testTwoFactorTb2( "country", "SciEffect"); f #p=0.24
0 0.5 1
0 3 12 26
1 28 44 83
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.2366
alternative hypothesis: two.sided
>
> summary(lm(tb2$SciEffect ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #significant kilo
Call:
lm(formula = tb2$SciEffect ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8335 -0.2211 0.1061 0.2569 0.6007
Coefficients:
Estimate Std. Error t value
(Intercept) 0.549685 0.239429 2.296
tb2$kilo 0.202271 0.085085 2.377
tb2$country -0.058298 0.069758 -0.836
tb2$genderFemale -0.057088 0.222510 -0.257
tb2$genderMale 0.089409 0.221791 0.403
tb2$age23-30 0.004917 0.081407 0.060
tb2$age31-40 0.076479 0.099473 0.769
tb2$age41-50 0.058817 0.108455 0.542
tb2$age51-55 0.209009 0.125430 1.666
tb2$age56-60 0.088502 0.112724 0.785
tb2$ageMore than 60 years old 0.124934 0.108513 1.151
tb2$degreeBachelor Degree in Science or equivalent -0.038077 0.087300 -0.436
tb2$degreeHigh School or equivalent -0.034963 0.078640 -0.445
tb2$degreeM.D. or equivalent 0.082156 0.381055 0.216
tb2$degreeMaster Degree or equivalent -0.018872 0.106131 -0.178
tb2$degreePh.D. or equivalent -0.098217 0.095039 -1.033
Pr(>|t|)
(Intercept) 0.0228 *
tb2$kilo 0.0185 *
tb2$country 0.4044
tb2$genderFemale 0.7978
tb2$genderMale 0.6873
tb2$age23-30 0.9519
tb2$age31-40 0.4430
tb2$age41-50 0.5883
tb2$age51-55 0.0974 .
tb2$age56-60 0.4334
tb2$ageMore than 60 years old 0.2511
tb2$degreeBachelor Degree in Science or equivalent 0.6632
tb2$degreeHigh School or equivalent 0.6571
tb2$degreeM.D. or equivalent 0.8295
tb2$degreeMaster Degree or equivalent 0.8591
tb2$degreePh.D. or equivalent 0.3028
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3629 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1335, Adjusted R-squared: 0.06091
F-statistic: 1.839 on 15 and 179 DF, p-value: 0.03247
> summary(lm(tb2$SciOnLife ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #no effect
Call:
lm(formula = tb2$SciOnLife ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.95129 0.01410 0.07902 0.11129 0.20841
Coefficients:
Estimate Std. Error t value
(Intercept) 1.017651 0.159053 6.398
tb2$kilo 0.037528 0.056522 0.664
tb2$country -0.051927 0.046340 -1.121
tb2$genderFemale -0.131418 0.147813 -0.889
tb2$genderMale -0.114197 0.147335 -0.775
tb2$age23-30 0.060025 0.054079 1.110
tb2$age31-40 -0.015880 0.066080 -0.240
tb2$age41-50 -0.032831 0.072046 -0.456
tb2$age51-55 0.035270 0.083323 0.423
tb2$age56-60 -0.001425 0.074883 -0.019
tb2$ageMore than 60 years old 0.047061 0.072085 0.653
tb2$degreeBachelor Degree in Science or equivalent 0.036818 0.057993 0.635
tb2$degreeHigh School or equivalent 0.019434 0.052240 0.372
tb2$degreeM.D. or equivalent 0.074898 0.253135 0.296
tb2$degreeMaster Degree or equivalent 0.064758 0.070503 0.919
tb2$degreePh.D. or equivalent -0.047408 0.063134 -0.751
Pr(>|t|)
(Intercept) 1.33e-09 ***
tb2$kilo 0.508
tb2$country 0.264
tb2$genderFemale 0.375
tb2$genderMale 0.439
tb2$age23-30 0.269
tb2$age31-40 0.810
tb2$age41-50 0.649
tb2$age51-55 0.673
tb2$age56-60 0.985
tb2$ageMore than 60 years old 0.515
tb2$degreeBachelor Degree in Science or equivalent 0.526
tb2$degreeHigh School or equivalent 0.710
tb2$degreeM.D. or equivalent 0.768
tb2$degreeMaster Degree or equivalent 0.360
tb2$degreePh.D. or equivalent 0.454
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.241 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.05604, Adjusted R-squared: -0.02307
F-statistic: 0.7084 on 15 and 179 DF, p-value: 0.774
> summary(lm(tb2$religiousView ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #age effect
Call:
lm(formula = tb2$religiousView ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8435 -0.3345 0.0795 0.3265 0.7034
Coefficients:
Estimate Std. Error t value
(Intercept) 0.25085 0.27787 0.903
tb2$kilo -0.06561 0.09875 -0.664
tb2$country -0.03791 0.08096 -0.468
tb2$genderFemale 0.34987 0.25823 1.355
tb2$genderMale 0.51980 0.25740 2.019
tb2$age23-30 0.06767 0.09448 0.716
tb2$age31-40 0.15464 0.11544 1.340
tb2$age41-50 0.25771 0.12587 2.047
tb2$age51-55 0.31666 0.14557 2.175
tb2$age56-60 0.47689 0.13082 3.645
tb2$ageMore than 60 years old 0.33475 0.12593 2.658
tb2$degreeBachelor Degree in Science or equivalent -0.16877 0.10132 -1.666
tb2$degreeHigh School or equivalent -0.20056 0.09126 -2.198
tb2$degreeM.D. or equivalent 0.14033 0.44223 0.317
tb2$degreeMaster Degree or equivalent -0.08137 0.12317 -0.661
tb2$degreePh.D. or equivalent -0.08513 0.11030 -0.772
Pr(>|t|)
(Intercept) 0.36787
tb2$kilo 0.50725
tb2$country 0.64014
tb2$genderFemale 0.17716
tb2$genderMale 0.04493 *
tb2$age23-30 0.47475
tb2$age31-40 0.18210
tb2$age41-50 0.04207 *
tb2$age51-55 0.03091 *
tb2$age56-60 0.00035 ***
tb2$ageMore than 60 years old 0.00857 **
tb2$degreeBachelor Degree in Science or equivalent 0.09750 .
tb2$degreeHigh School or equivalent 0.02926 *
tb2$degreeM.D. or equivalent 0.75137
tb2$degreeMaster Degree or equivalent 0.50972
tb2$degreePh.D. or equivalent 0.44121
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4211 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.2485, Adjusted R-squared: 0.1855
F-statistic: 3.945 on 15 and 179 DF, p-value: 3.962e-06
> summary(lm(tb2$dailyLife ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #gender
Call:
lm(formula = tb2$dailyLife ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.91792 -0.18296 0.09572 0.22627 0.62474
Coefficients:
Estimate Std. Error t value
(Intercept) 0.062095 0.213746 0.291
tb2$kilo 0.041672 0.075958 0.549
tb2$country 0.109441 0.062275 1.757
tb2$genderFemale 0.498227 0.198642 2.508
tb2$genderMale 0.553555 0.197999 2.796
tb2$age23-30 -0.015271 0.072675 -0.210
tb2$age31-40 0.026855 0.088802 0.302
tb2$age41-50 -0.205710 0.096821 -2.125
tb2$age51-55 0.070667 0.111975 0.631
tb2$age56-60 0.003735 0.100632 0.037
tb2$ageMore than 60 years old 0.068966 0.096873 0.712
tb2$degreeBachelor Degree in Science or equivalent 0.162050 0.077936 2.079
tb2$degreeHigh School or equivalent 0.036532 0.070204 0.520
tb2$degreeM.D. or equivalent 0.315824 0.340180 0.928
tb2$degreeMaster Degree or equivalent 0.275690 0.094746 2.910
tb2$degreePh.D. or equivalent 0.137518 0.084844 1.621
Pr(>|t|)
(Intercept) 0.77176
tb2$kilo 0.58395
tb2$country 0.08056 .
tb2$genderFemale 0.01303 *
tb2$genderMale 0.00574 **
tb2$age23-30 0.83381
tb2$age31-40 0.76269
tb2$age41-50 0.03499 *
tb2$age51-55 0.52878
tb2$age56-60 0.97043
tb2$ageMore than 60 years old 0.47744
tb2$degreeBachelor Degree in Science or equivalent 0.03902 *
tb2$degreeHigh School or equivalent 0.60345
tb2$degreeM.D. or equivalent 0.35445
tb2$degreeMaster Degree or equivalent 0.00408 **
tb2$degreePh.D. or equivalent 0.10681
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3239 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1558, Adjusted R-squared: 0.08502
F-statistic: 2.202 on 15 and 179 DF, p-value: 0.007798
>
> summary(lm(tb2$religiousView ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #significant age, gender
Call:
lm(formula = tb2$religiousView ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8435 -0.3345 0.0795 0.3265 0.7034
Coefficients:
Estimate Std. Error t value
(Intercept) 0.25085 0.27787 0.903
tb2$kilo -0.06561 0.09875 -0.664
tb2$country -0.03791 0.08096 -0.468
tb2$genderFemale 0.34987 0.25823 1.355
tb2$genderMale 0.51980 0.25740 2.019
tb2$age23-30 0.06767 0.09448 0.716
tb2$age31-40 0.15464 0.11544 1.340
tb2$age41-50 0.25771 0.12587 2.047
tb2$age51-55 0.31666 0.14557 2.175
tb2$age56-60 0.47689 0.13082 3.645
tb2$ageMore than 60 years old 0.33475 0.12593 2.658
tb2$degreeBachelor Degree in Science or equivalent -0.16877 0.10132 -1.666
tb2$degreeHigh School or equivalent -0.20056 0.09126 -2.198
tb2$degreeM.D. or equivalent 0.14033 0.44223 0.317
tb2$degreeMaster Degree or equivalent -0.08137 0.12317 -0.661
tb2$degreePh.D. or equivalent -0.08513 0.11030 -0.772
Pr(>|t|)
(Intercept) 0.36787
tb2$kilo 0.50725
tb2$country 0.64014
tb2$genderFemale 0.17716
tb2$genderMale 0.04493 *
tb2$age23-30 0.47475
tb2$age31-40 0.18210
tb2$age41-50 0.04207 *
tb2$age51-55 0.03091 *
tb2$age56-60 0.00035 ***
tb2$ageMore than 60 years old 0.00857 **
tb2$degreeBachelor Degree in Science or equivalent 0.09750 .
tb2$degreeHigh School or equivalent 0.02926 *
tb2$degreeM.D. or equivalent 0.75137
tb2$degreeMaster Degree or equivalent 0.50972
tb2$degreePh.D. or equivalent 0.44121
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4211 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.2485, Adjusted R-squared: 0.1855
F-statistic: 3.945 on 15 and 179 DF, p-value: 3.962e-06
> summary(lm(tb2$SciOnLife ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #no effect
Call:
lm(formula = tb2$SciOnLife ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.95129 0.01410 0.07902 0.11129 0.20841
Coefficients:
Estimate Std. Error t value
(Intercept) 1.017651 0.159053 6.398
tb2$kilo 0.037528 0.056522 0.664
tb2$country -0.051927 0.046340 -1.121
tb2$genderFemale -0.131418 0.147813 -0.889
tb2$genderMale -0.114197 0.147335 -0.775
tb2$age23-30 0.060025 0.054079 1.110
tb2$age31-40 -0.015880 0.066080 -0.240
tb2$age41-50 -0.032831 0.072046 -0.456
tb2$age51-55 0.035270 0.083323 0.423
tb2$age56-60 -0.001425 0.074883 -0.019
tb2$ageMore than 60 years old 0.047061 0.072085 0.653
tb2$degreeBachelor Degree in Science or equivalent 0.036818 0.057993 0.635
tb2$degreeHigh School or equivalent 0.019434 0.052240 0.372
tb2$degreeM.D. or equivalent 0.074898 0.253135 0.296
tb2$degreeMaster Degree or equivalent 0.064758 0.070503 0.919
tb2$degreePh.D. or equivalent -0.047408 0.063134 -0.751
Pr(>|t|)
(Intercept) 1.33e-09 ***
tb2$kilo 0.508
tb2$country 0.264
tb2$genderFemale 0.375
tb2$genderMale 0.439
tb2$age23-30 0.269
tb2$age31-40 0.810
tb2$age41-50 0.649
tb2$age51-55 0.673
tb2$age56-60 0.985
tb2$ageMore than 60 years old 0.515
tb2$degreeBachelor Degree in Science or equivalent 0.526
tb2$degreeHigh School or equivalent 0.710
tb2$degreeM.D. or equivalent 0.768
tb2$degreeMaster Degree or equivalent 0.360
tb2$degreePh.D. or equivalent 0.454
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.241 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.05604, Adjusted R-squared: -0.02307
F-statistic: 0.7084 on 15 and 179 DF, p-value: 0.774
> summary(lm(tb2$dailyLife ~ tb2$kilo + tb2$country + tb2$gender + tb2$age + tb2$degree )) #gender effect, education
Call:
lm(formula = tb2$dailyLife ~ tb2$kilo + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.91792 -0.18296 0.09572 0.22627 0.62474
Coefficients:
Estimate Std. Error t value
(Intercept) 0.062095 0.213746 0.291
tb2$kilo 0.041672 0.075958 0.549
tb2$country 0.109441 0.062275 1.757
tb2$genderFemale 0.498227 0.198642 2.508
tb2$genderMale 0.553555 0.197999 2.796
tb2$age23-30 -0.015271 0.072675 -0.210
tb2$age31-40 0.026855 0.088802 0.302
tb2$age41-50 -0.205710 0.096821 -2.125
tb2$age51-55 0.070667 0.111975 0.631
tb2$age56-60 0.003735 0.100632 0.037
tb2$ageMore than 60 years old 0.068966 0.096873 0.712
tb2$degreeBachelor Degree in Science or equivalent 0.162050 0.077936 2.079
tb2$degreeHigh School or equivalent 0.036532 0.070204 0.520
tb2$degreeM.D. or equivalent 0.315824 0.340180 0.928
tb2$degreeMaster Degree or equivalent 0.275690 0.094746 2.910
tb2$degreePh.D. or equivalent 0.137518 0.084844 1.621
Pr(>|t|)
(Intercept) 0.77176
tb2$kilo 0.58395
tb2$country 0.08056 .
tb2$genderFemale 0.01303 *
tb2$genderMale 0.00574 **
tb2$age23-30 0.83381
tb2$age31-40 0.76269
tb2$age41-50 0.03499 *
tb2$age51-55 0.52878
tb2$age56-60 0.97043
tb2$ageMore than 60 years old 0.47744
tb2$degreeBachelor Degree in Science or equivalent 0.03902 *
tb2$degreeHigh School or equivalent 0.60345
tb2$degreeM.D. or equivalent 0.35445
tb2$degreeMaster Degree or equivalent 0.00408 **
tb2$degreePh.D. or equivalent 0.10681
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3239 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1558, Adjusted R-squared: 0.08502
F-statistic: 2.202 on 15 and 179 DF, p-value: 0.007798
>
> summary(lm(tb2$SciEffect ~ tb2$mm + tb2$country + tb2$gender + tb2$age + tb2$degree )) #no effect
Call:
lm(formula = tb2$SciEffect ~ tb2$mm + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.84191 -0.22587 0.09511 0.28914 0.48110
Coefficients:
Estimate Std. Error t value
(Intercept) 0.62067 0.23807 2.607
tb2$mm 0.10057 0.05905 1.703
tb2$country -0.03996 0.07008 -0.570
tb2$genderFemale -0.03053 0.22370 -0.136
tb2$genderMale 0.12393 0.22251 0.557
tb2$age23-30 0.03514 0.08286 0.424
tb2$age31-40 0.06967 0.10020 0.695
tb2$age41-50 0.04963 0.10936 0.454
tb2$age51-55 0.15955 0.12735 1.253
tb2$age56-60 0.05654 0.11439 0.494
tb2$ageMore than 60 years old 0.11230 0.10906 1.030
tb2$degreeBachelor Degree in Science or equivalent -0.01984 0.08727 -0.227
tb2$degreeHigh School or equivalent -0.03128 0.07922 -0.395
tb2$degreeM.D. or equivalent 0.08516 0.38426 0.222
tb2$degreeMaster Degree or equivalent -0.01262 0.10746 -0.117
tb2$degreePh.D. or equivalent -0.08974 0.09573 -0.937
Pr(>|t|)
(Intercept) 0.0099 **
tb2$mm 0.0903 .
tb2$country 0.5693
tb2$genderFemale 0.8916
tb2$genderMale 0.5782
tb2$age23-30 0.6720
tb2$age31-40 0.4878
tb2$age41-50 0.6505
tb2$age51-55 0.2119
tb2$age56-60 0.6217
tb2$ageMore than 60 years old 0.3045
tb2$degreeBachelor Degree in Science or equivalent 0.8204
tb2$degreeHigh School or equivalent 0.6934
tb2$degreeM.D. or equivalent 0.8249
tb2$degreeMaster Degree or equivalent 0.9066
tb2$degreePh.D. or equivalent 0.3498
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3656 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1204, Adjusted R-squared: 0.04671
F-statistic: 1.634 on 15 and 179 DF, p-value: 0.06882
> summary(lm(tb2$SciEffect ~ tb2$inseam + tb2$country + tb2$gender + tb2$age + tb2$degree )) #random
Call:
lm(formula = tb2$SciEffect ~ tb2$inseam + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8445 -0.2361 0.1071 0.2889 0.4879
Coefficients:
Estimate Std. Error t value
(Intercept) 0.629142 0.238932 2.633
tb2$inseam 0.088970 0.071644 1.242
tb2$country -0.046510 0.070319 -0.661
tb2$genderFemale -0.050022 0.225843 -0.221
tb2$genderMale 0.117379 0.224368 0.523
tb2$age23-30 0.016829 0.082266 0.205
tb2$age31-40 0.048870 0.102153 0.478
tb2$age41-50 0.045992 0.110058 0.418
tb2$age51-55 0.173723 0.127244 1.365
tb2$age56-60 0.057793 0.115406 0.501
tb2$ageMore than 60 years old 0.090152 0.109677 0.822
tb2$degreeBachelor Degree in Science or equivalent -0.002302 0.086559 -0.027
tb2$degreeHigh School or equivalent -0.020527 0.079404 -0.259
tb2$degreeM.D. or equivalent 0.115638 0.385002 0.300
tb2$degreeMaster Degree or equivalent 0.013715 0.106123 0.129
tb2$degreePh.D. or equivalent -0.078537 0.095617 -0.821
Pr(>|t|)
(Intercept) 0.0092 **
tb2$inseam 0.2159
tb2$country 0.5092
tb2$genderFemale 0.8250
tb2$genderMale 0.6015
tb2$age23-30 0.8381
tb2$age31-40 0.6329
tb2$age41-50 0.6765
tb2$age51-55 0.1739
tb2$age56-60 0.6171
tb2$ageMore than 60 years old 0.4122
tb2$degreeBachelor Degree in Science or equivalent 0.9788
tb2$degreeHigh School or equivalent 0.7963
tb2$degreeM.D. or equivalent 0.7643
tb2$degreeMaster Degree or equivalent 0.8973
tb2$degreePh.D. or equivalent 0.4125
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.367 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1138, Adjusted R-squared: 0.03954
F-statistic: 1.532 on 15 and 179 DF, p-value: 0.09782
> summary(lm(tb2$SciEffect ~ tb2$shaq + tb2$country + tb2$gender + tb2$age + tb2$degree )) #p=0.066 shaq
Call:
lm(formula = tb2$SciEffect ~ tb2$shaq + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8601 -0.2339 0.0977 0.2691 0.5307
Coefficients:
Estimate Std. Error t value
(Intercept) 0.553451 0.242835 2.279
tb2$shaq 0.140668 0.076161 1.847
tb2$country -0.029867 0.070380 -0.424
tb2$genderFemale -0.015014 0.223294 -0.067
tb2$genderMale 0.136150 0.221790 0.614
tb2$age23-30 0.004726 0.081970 0.058
tb2$age31-40 0.081995 0.100230 0.818
tb2$age41-50 0.047487 0.109246 0.435
tb2$age51-55 0.176785 0.126132 1.402
tb2$age56-60 0.091013 0.113507 0.802
tb2$ageMore than 60 years old 0.096935 0.108758 0.891
tb2$degreeBachelor Degree in Science or equivalent -0.031329 0.088150 -0.355
tb2$degreeHigh School or equivalent -0.039257 0.079439 -0.494
tb2$degreeM.D. or equivalent 0.087735 0.383519 0.229
tb2$degreeMaster Degree or equivalent 0.004961 0.105772 0.047
tb2$degreePh.D. or equivalent -0.094381 0.095810 -0.985
Pr(>|t|)
(Intercept) 0.0238 *
tb2$shaq 0.0664 .
tb2$country 0.6718
tb2$genderFemale 0.9465
tb2$genderMale 0.5401
tb2$age23-30 0.9541
tb2$age31-40 0.4144
tb2$age41-50 0.6643
tb2$age51-55 0.1628
tb2$age56-60 0.4237
tb2$ageMore than 60 years old 0.3740
tb2$degreeBachelor Degree in Science or equivalent 0.7227
tb2$degreeHigh School or equivalent 0.6218
tb2$degreeM.D. or equivalent 0.8193
tb2$degreeMaster Degree or equivalent 0.9626
tb2$degreePh.D. or equivalent 0.3259
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3651 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1229, Adjusted R-squared: 0.04938
F-statistic: 1.672 on 15 and 179 DF, p-value: 0.06009
> summary(lm(tb2$SciEffect ~ tb2$weather + tb2$country + tb2$gender + tb2$age + tb2$degree )) #no effect
Call:
lm(formula = tb2$SciEffect ~ tb2$weather + tb2$country + tb2$gender +
tb2$age + tb2$degree)
Residuals:
Min 1Q Median 3Q Max
-0.8569 -0.2395 0.1115 0.2922 0.4976
Coefficients:
Estimate Std. Error t value
(Intercept) 0.60791 0.24135 2.519
tb2$weather 0.09477 0.08287 1.144
tb2$country -0.03086 0.07134 -0.433
tb2$genderFemale -0.05128 0.22637 -0.227
tb2$genderMale 0.10802 0.22598 0.478
tb2$age23-30 0.01852 0.08238 0.225
tb2$age31-40 0.05866 0.10122 0.580
tb2$age41-50 0.05261 0.10983 0.479
tb2$age51-55 0.17717 0.12715 1.393
tb2$age56-60 0.06226 0.11513 0.541
tb2$ageMore than 60 years old 0.09632 0.10946 0.880
tb2$degreeBachelor Degree in Science or equivalent 0.01476 0.08681 0.170
tb2$degreeHigh School or equivalent -0.02334 0.07943 -0.294
tb2$degreeM.D. or equivalent 0.13063 0.38512 0.339
tb2$degreeMaster Degree or equivalent 0.01237 0.10632 0.116
tb2$degreePh.D. or equivalent -0.07918 0.09579 -0.827
Pr(>|t|)
(Intercept) 0.0127 *
tb2$weather 0.2543
tb2$country 0.6659
tb2$genderFemale 0.8211
tb2$genderMale 0.6332
tb2$age23-30 0.8223
tb2$age31-40 0.5629
tb2$age41-50 0.6325
tb2$age51-55 0.1652
tb2$age56-60 0.5893
tb2$ageMore than 60 years old 0.3801
tb2$degreeBachelor Degree in Science or equivalent 0.8652
tb2$degreeHigh School or equivalent 0.7692
tb2$degreeM.D. or equivalent 0.7349
tb2$degreeMaster Degree or equivalent 0.9075
tb2$degreePh.D. or equivalent 0.4096
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3672 on 179 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1126, Adjusted R-squared: 0.03829
F-statistic: 1.515 on 15 and 179 DF, p-value: 0.1038
>
>
> f = testTwoFactorTb2("country", "shaq")
0 0.5 1
0 2 4 35
1 27 23 105
> f
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.06516
alternative hypothesis: two.sided
>
> f = testTwoFactorTb2( "country", "shaq")
0 0.5 1
0 2 4 35
1 27 23 105
> f
Fisher's Exact Test for Count Data
data: tbTwo
p-value = 0.06516
alternative hypothesis: two.sided
>
>
>
No comments:
Post a Comment