0.fit_qinlabrls.Rmd
h qin
July 6, 2016
rm(list=ls())
setwd("~/github/0.network.aging.prj.bmc/0a.rls.fitting")
library('flexsurv')
## Warning: package 'flexsurv' was built under R version 3.2.4
## Loading required package: survival
## Warning: package 'survival' was built under R version 3.2.5
source("lifespan.r")
Fit with Flexsurv.
files = list.files(path="../qinlab_rls/", pattern="rls.tab")
report = data.frame(cbind(files))
report$R=NA; report$t0=NA; report$n=NA;
i=2
tb = read.table( paste("../qinlab_rls/",files[i],sep=''), sep="\t")
GompFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'gompertz')
WeibFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'weibull')
str(GompFlex)
## List of 28
## $ call : language flexsurvreg(formula = Surv(tb[, 1]) ~ 1, dist = "gompertz")
## $ dlist :List of 6
## ..$ name : chr "gompertz"
## ..$ pars : chr [1:2] "shape" "rate"
## ..$ location : chr "rate"
## ..$ transforms :List of 2
## .. ..$ :function (x)
## .. ..$ :function (x, base = exp(1))
## ..$ inv.transforms:List of 2
## .. ..$ :function (x)
## .. ..$ :function (x)
## ..$ inits :function (t, mf, mml, aux)
## $ aux : NULL
## $ ncovs : int 0
## $ ncoveffs : int 0
## $ mx :List of 2
## ..$ rate : int(0)
## ..$ shape: NULL
## $ basepars : int [1:2] 1 2
## $ covpars : NULL
## $ AIC : num 213
## $ data :List of 3
## ..$ Y : num [1:30, 1:6] 10 10 11 14 15 15 16 22 24 25 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
## .. .. ..$ : chr [1:6] "time" "status" "start" "stop" ...
## ..$ m :'data.frame': 30 obs. of 2 variables:
## .. ..$ Surv(tb[, 1]): Surv [1:30, 1:2] 10 10 11 14 15 15 16 22 24 25 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : NULL
## .. .. .. ..$ : chr [1:2] "time" "status"
## .. .. ..- attr(*, "type")= chr "right"
## .. ..$ (weights) : num [1:30] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. .. .. ..- attr(*, "variables")= language list(Surv(tb[, 1]))
## .. .. .. ..- attr(*, "factors")= int(0)
## .. .. .. ..- attr(*, "term.labels")= chr(0)
## .. .. .. ..- attr(*, "order")= int(0)
## .. .. .. ..- attr(*, "intercept")= int 1
## .. .. .. ..- attr(*, "response")= int 1
## .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. .. ..- attr(*, "predvars")= language list(Surv(tb[, 1]))
## .. .. .. ..- attr(*, "dataClasses")= Named chr "nmatrix.2"
## .. .. .. .. ..- attr(*, "names")= chr "Surv(tb[, 1])"
## .. ..- attr(*, "covnames")= chr(0)
## .. ..- attr(*, "covnames.orig")= chr(0)
## ..$ mml:List of 2
## .. ..$ rate : num [1:30, 1] 1 1 1 1 1 1 1 1 1 1 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
## .. .. .. ..$ : chr "(Intercept)"
## .. .. ..- attr(*, "assign")= int 0
## .. ..$ shape: NULL
## $ datameans : num(0)
## $ N : int 30
## $ events : int 30
## $ trisk : num 810
## $ concat.formula:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "covnames")= chr(0)
## .. ..- attr(*, "covnames.orig")= chr(0)
## $ all.formulae :List of 1
## ..$ rate:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## $ dfns :List of 8
## ..$ p :function (q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)
## ..$ d :function (x, shape, rate = 1, log = FALSE)
## ..$ h :function (x, shape, rate = 1, log = FALSE)
## ..$ H :function (x, shape, rate = 1, log = FALSE)
## ..$ r :function (n, shape = 1, rate = 1)
## ..$ DLd :function (t, shape, rate)
## ..$ DLS :function (t, shape, rate)
## ..$ deriv: logi TRUE
## $ res : num [1:2, 1:4] 0.146413 0.001603 0.098752 0.000421 0.194074 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "rate"
## .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
## $ res.t : num [1:2, 1:4] 0.1464 -6.4361 0.0988 -7.7719 0.1941 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "rate"
## .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
## $ cov : num [1:2, 1:2] 0.000591 -0.015967 -0.015967 0.464473
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "rate"
## .. ..$ : chr [1:2] "shape" "rate"
## $ coefficients : Named num [1:2] 0.146 -6.436
## ..- attr(*, "names")= chr [1:2] "shape" "rate"
## $ npars : int 2
## $ fixedpars : NULL
## $ optpars : int [1:2] 1 2
## $ loglik : num -104
## $ logliki : num [1:30] -5.01 -5.01 -4.87 -4.46 -4.33 ...
## $ cl : num 0.95
## $ opt :List of 6
## ..$ par : Named num [1:2] 0.146 -6.436
## .. ..- attr(*, "names")= chr [1:2] "shape" "rate"
## ..$ value : num 104
## ..$ counts : Named int [1:2] 35 10
## .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
## ..$ convergence: int 0
## ..$ message : NULL
## ..$ hessian : num [1:2, 1:2] 23564 810 810 30
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:2] "shape" "rate"
## .. .. ..$ : chr [1:2] "shape" "rate"
## - attr(*, "class")= chr "flexsurvreg"
GompFlex$res
## est L95% U95% se
## shape 0.146412756 0.0987519623 0.194073550 0.024317178
## rate 0.001602638 0.0004214271 0.006094643 0.001092234
GompFlex$res.t
## est L95% U95% se
## shape 0.1464128 0.09875196 0.1940735 0.02431718
## rate -6.4361044 -7.77186373 -5.1003451 0.68152238
GompFlex$opt$hessian
## shape rate
## shape 23564.3361 810.0597
## rate 810.0597 30.0000
str(WeibFlex)
## List of 28
## $ call : language flexsurvreg(formula = Surv(tb[, 1]) ~ 1, dist = "weibull")
## $ dlist :List of 6
## ..$ name : chr "weibull.quiet"
## ..$ pars : chr [1:2] "shape" "scale"
## ..$ location : chr "scale"
## ..$ transforms :List of 2
## .. ..$ :function (x, base = exp(1))
## .. ..$ :function (x, base = exp(1))
## ..$ inv.transforms:List of 2
## .. ..$ :function (x)
## .. ..$ :function (x)
## ..$ inits :function (t, mf, mml, aux)
## $ aux : NULL
## $ ncovs : int 0
## $ ncoveffs : int 0
## $ mx :List of 2
## ..$ scale: int(0)
## ..$ shape: NULL
## $ basepars : int [1:2] 1 2
## $ covpars : NULL
## $ AIC : num 218
## $ data :List of 3
## ..$ Y : num [1:30, 1:6] 10 10 11 14 15 15 16 22 24 25 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
## .. .. ..$ : chr [1:6] "time" "status" "start" "stop" ...
## ..$ m :'data.frame': 30 obs. of 2 variables:
## .. ..$ Surv(tb[, 1]): Surv [1:30, 1:2] 10 10 11 14 15 15 16 22 24 25 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : NULL
## .. .. .. ..$ : chr [1:2] "time" "status"
## .. .. ..- attr(*, "type")= chr "right"
## .. ..$ (weights) : num [1:30] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. .. .. ..- attr(*, "variables")= language list(Surv(tb[, 1]))
## .. .. .. ..- attr(*, "factors")= int(0)
## .. .. .. ..- attr(*, "term.labels")= chr(0)
## .. .. .. ..- attr(*, "order")= int(0)
## .. .. .. ..- attr(*, "intercept")= int 1
## .. .. .. ..- attr(*, "response")= int 1
## .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. .. ..- attr(*, "predvars")= language list(Surv(tb[, 1]))
## .. .. .. ..- attr(*, "dataClasses")= Named chr "nmatrix.2"
## .. .. .. .. ..- attr(*, "names")= chr "Surv(tb[, 1])"
## .. ..- attr(*, "covnames")= chr(0)
## .. ..- attr(*, "covnames.orig")= chr(0)
## ..$ mml:List of 2
## .. ..$ scale: num [1:30, 1] 1 1 1 1 1 1 1 1 1 1 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
## .. .. .. ..$ : chr "(Intercept)"
## .. .. ..- attr(*, "assign")= int 0
## .. ..$ shape: NULL
## $ datameans : num(0)
## $ N : int 30
## $ events : int 30
## $ trisk : num 810
## $ concat.formula:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "covnames")= chr(0)
## .. ..- attr(*, "covnames.orig")= chr(0)
## $ all.formulae :List of 1
## ..$ scale:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## $ dfns :List of 8
## ..$ p :function (q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
## ..$ d :function (x, shape, scale = 1, log = FALSE)
## ..$ h :function (x, ...)
## ..$ H :function (x, ...)
## ..$ r :function (n, shape, scale = 1)
## ..$ DLd :function (t, shape, scale)
## ..$ DLS :function (t, shape, scale)
## ..$ deriv: logi TRUE
## $ res : num [1:2, 1:4] 3.77 30 2.76 27.17 5.13 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "scale"
## .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
## $ res.t : num [1:2, 1:4] 1.33 3.4 1.02 3.3 1.64 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "scale"
## .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
## $ cov : num [1:2, 1:2] 0.02502 0.00225 0.00225 0.00255
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "scale"
## .. ..$ : chr [1:2] "shape" "scale"
## $ coefficients : Named num [1:2] 1.33 3.4
## ..- attr(*, "names")= chr [1:2] "shape" "scale"
## $ npars : int 2
## $ fixedpars : NULL
## $ optpars : int [1:2] 1 2
## $ loglik : num -107
## $ logliki : Named num [1:30] -5.13 -5.13 -4.87 -4.24 -4.06 ...
## ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
## $ cl : num 0.95
## $ opt :List of 6
## ..$ par : Named num [1:2] 1.33 3.4
## .. ..- attr(*, "names")= chr [1:2] "shape" "scale"
## ..$ value : num 107
## ..$ counts : Named int [1:2] 2 1
## .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
## ..$ convergence: int 0
## ..$ message : NULL
## ..$ hessian : num [1:2, 1:2] 43.4 -38.3 -38.3 425.3
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:2] "shape" "scale"
## .. .. ..$ : chr [1:2] "shape" "scale"
## - attr(*, "class")= chr "flexsurvreg"
for( i in 1:length(report[,1])){
#for( i in 3:4){
tb = read.table( paste("../qinlab_rls/",files[i],sep=''), sep="\t")
GompFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'gompertz')
WeibFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'weibull')
report$avgLS[i] = mean(tb[,1])
report$stdLS[i] = sd(tb[,1])
report$CV[i] = report$stdLS[i] / report$avgLS[i]
report$GompGFlex[i] = GompFlex$res[1,1]
report$GompRFlex[i] = GompFlex$res[2,1]
report$GompLogLikFlex[i] = round(GompFlex$loglik, 1)
report$GompAICFlex[i] = round(GompFlex$AIC)
report$WeibShapeFlex[i] = WeibFlex$res[1,1]
report$WeibRateFlex[i] = WeibFlex$res[2,1]
report$WeibLogLikFlex[i] = round(WeibFlex$loglik, 1)
report$WeibAICFlex[i] = round(WeibFlex$AIC)
Rhat = report$GompRFlex[i]; # 'i' was missing. a bug costed HQ a whole afternoon.
Ghat = report$GompGFlex[i];
nhat = 5;
t0= (nhat-1)/Ghat;
fitBinom = optim ( c(Rhat, t0, nhat), llh.binomialMortality.single.run,
lifespan=tb[,1], method="L-BFGS-B",
lower=c(1E-10,0.05, 1), upper=c(10,100,20) );
report[i, c("R", "t0", "n")] = fitBinom$par[1:3]
}
Gompert versus Weibull? AIC: smaller is better (for information loss)report$BestModel = ifelse(report$GompAICFlex < report$WeibAICFlex, "Gomp", "Weib")
report$BestModel = ifelse(abs(report$GompAICFlex - report$WeibAICFlex)<2, "<2", report$BestModel)
Show the resultsreport
## files R t0 n avgLS
## 1 010305.BY4743.rls.tab 0.003361728 51.84926 6.986795 32.56667
## 2 010305.M34.rls.tab 0.002281149 27.19448 6.315472 27.00000
## 3 010305.YPS128.rls.tab 0.004208781 35.91839 5.003790 34.30000
## 4 010305.YPS163.rls.tab 0.001973314 29.91767 6.129599 32.40000
## 5 011705.BY4743.rls.tab 0.003199692 56.68345 7.020039 34.80000
## 6 011705.M2-8.rls.tab 0.004309832 40.19223 6.888514 24.96429
## 7 020105.M2-8.rls.tab 0.002100836 24.96629 6.782559 24.63265
## 8 020105.YPS128.rls.tab 0.003198883 31.92006 5.003532 35.53846
## 9 020205.M5.rls.tab 0.003607006 69.39799 6.950697 38.10811
## 10 020905.M32.rls.tab 0.004377059 25.52056 5.004739 28.03333
## 11 020905.YPS163.rls.tab 0.001118296 16.35315 5.001654 38.06667
## 12 030105.M34.rls.tab 0.003961421 23.40804 5.004505 27.03571
## 13 030105.YPS163.rls.tab 0.001921115 22.98321 5.002596 36.06667
## 14 030205.M13.rls.tab 0.002041629 24.67678 6.151194 27.79310
## 15 030205.M8.rls.tab 0.002059049 24.20832 5.002678 35.70000
## 16 030905.M1-2.rls.tab 0.006986271 35.56665 5.003291 27.33333
## 17 030905.M14.rls.tab 0.002795597 31.69570 5.003190 36.83333
## 18 030905.M22.rls.tab 0.005151605 39.94654 5.003192 32.86667
## 19 030905.M8.rls.tab 0.002583361 26.17782 5.003157 34.16667
## 20 032105.M14.rls.tab 0.003135334 53.10912 6.399874 36.26667
## 21 032105.RM112N.rls.tab 0.003270878 45.59994 5.003008 44.27586
## 22 040805.M5.rls.tab 0.009506987 74.89056 5.001534 34.57500
## 23 040805.YPS163.rls.tab 0.006231753 42.59927 5.004125 32.00000
## 24 041505.M5.rls.tab 0.002107127 43.50023 6.667947 36.80000
## 25 042805.BY4716.rls.tab 0.003931803 55.09461 6.888677 31.76667
## 26 042805.RM112N.rls.tab 0.003034956 43.87268 5.003003 43.86667
## 27 042805.SGU57.rls.tab 0.009287234 53.31357 6.523759 22.70000
## 28 050905.BY4742.rls.tab 0.015187375 75.50504 6.345264 22.09677
## 29 050905.sir2D.4742.rls.tab 0.011968830 25.04875 6.929371 12.54839
## 30 050905.sir2DSIR2.4742.rls.tab 0.014314338 39.37424 6.568399 15.80000
## 31 051704.M13.rls.tab 0.003702579 38.12647 6.828330 25.65854
## 32 051704.S288c.rls.tab 0.004622237 45.92097 6.953311 26.26829
## 33 051805.sir2D.4742.rls.tab 0.003326837 14.51431 7.435202 12.83784
## 34 051805.sir2DSIR2.4742.rls.tab 0.009062209 30.52449 6.920478 15.77500
## 35 051805.SK1.rls.tab 0.016208627 62.59829 6.297356 19.46341
## 36 051805.W303.rls.tab 0.004902812 14.81653 5.006306 19.20000
## 37 052604.sir2D.4741a.rls.tab 0.006931647 19.30151 7.256420 12.48000
## 38 052604.W303.rls.tab 0.004830018 27.36559 7.252533 17.93333
## 39 053104.BY4741.rls.tab 0.003897944 55.09940 6.865935 32.03333
## 40 053104.BY4742.rls.tab 0.013531169 61.72988 6.492899 20.90000
## 41 053104.JSBY4741.rls.tab 0.002301507 41.09508 6.395818 35.40000
## 42 060805.101S.rls.tab 0.003189098 26.89393 5.003689 32.20690
## 43 060805.SK1.rls.tab 0.003586238 35.64948 6.775244 25.06667
## 44 061004.BY4741.rls.tab 0.007837809 55.44565 6.952965 24.00000
## 45 061004.BY4742.rls.tab 0.005960546 16.88916 5.006873 18.96667
## 46 090104.M22.rls.tab 0.002029863 30.79522 6.436227 30.80000
## 47 090104.M5.rls.tab 0.002727043 26.24409 5.003288 33.44828
## 48 091904.101S.rls.tab 0.003274548 23.70610 5.003873 29.11538
## 49 091904.M1-2.rls.tab 0.002276024 29.17914 6.373190 28.33333
## 50 091904.SGU57.rls.tab 0.003780261 35.99534 6.702348 25.10714
## 51 122004.101S.rls.tab 0.004350692 32.05298 5.004511 32.43333
## 52 122004.BY4743.rls.tab 0.004414673 34.99516 5.003808 32.83333
## 53 122004.M32.rls.tab 0.002369105 31.09866 6.678197 27.90000
## 54 122004.M5.rls.tab 0.004086084 47.11631 5.002861 40.43333
## stdLS CV GompGFlex GompRFlex GompLogLikFlex GompAICFlex
## 1 10.666361 0.3275239 0.07697842 4.520672e-03 -116.8 238
## 2 8.870719 0.3285451 0.14641276 1.602638e-03 -104.5 213
## 3 10.034939 0.2925638 0.11136263 1.483120e-03 -110.8 226
## 4 8.528249 0.2632176 0.13323490 1.056716e-03 -106.1 216
## 5 11.244616 0.3231211 0.07043570 4.463297e-03 -118.8 242
## 6 9.566921 0.3832243 0.09917977 5.775350e-03 -206.0 416
## 7 6.197089 0.2515802 0.15850580 2.018556e-03 -161.7 327
## 8 9.566515 0.2691877 0.12531128 8.467668e-04 -141.2 286
## 9 13.817830 0.3625955 0.05756788 4.894747e-03 -152.7 309
## 10 5.833810 0.2081026 0.15673277 1.227489e-03 -99.3 203
## 11 4.968406 0.1305185 0.24459288 1.249275e-05 -89.4 183
## 12 7.593770 0.2808792 0.17087720 9.632527e-04 -93.1 190
## 13 6.410839 0.1777497 0.17403638 1.910733e-04 -98.6 201
## 14 7.866653 0.2830434 0.16127313 1.059086e-03 -97.7 199
## 15 6.170844 0.1728528 0.16522928 2.747861e-04 -99.0 202
## 16 9.876156 0.3613228 0.11246404 3.283654e-03 -98.4 201
## 17 10.683804 0.2900580 0.12619877 6.691071e-04 -109.8 224
## 18 12.249513 0.3727032 0.10013325 2.220664e-03 -114.6 233
## 19 7.598018 0.2223810 0.15279846 4.799010e-04 -102.6 209
## 20 14.806647 0.4082715 0.07521646 3.146350e-03 -121.0 246
## 21 12.900433 0.2913649 0.08771906 1.080074e-03 -114.5 233
## 22 15.311949 0.4428619 0.05341122 6.731125e-03 -166.2 336
## 23 10.940398 0.3418874 0.09389769 3.011183e-03 -152.0 308
## 24 10.179086 0.2766056 0.09173172 2.061227e-03 -114.3 233
## 25 12.082142 0.3803403 0.07246963 5.281817e-03 -118.2 240
## 26 13.325457 0.3037718 0.09117251 9.902588e-04 -117.5 239
## 27 10.948626 0.4823183 0.07490550 1.132399e-02 -113.4 231
## 28 11.736992 0.5311632 0.05293360 1.766844e-02 -119.9 244
## 29 5.371770 0.4280845 0.15825671 1.688167e-02 -96.0 196
## 30 7.480549 0.4734525 0.10126119 1.775066e-02 -102.9 210
## 31 9.946381 0.3876441 0.10454519 4.730819e-03 -150.5 305
## 32 10.254327 0.3903690 0.08686882 6.451205e-03 -154.2 312
## 33 3.452161 0.2689052 0.26717114 5.645344e-03 -101.6 207
## 34 6.454923 0.4091869 0.13022750 1.273026e-02 -132.4 269
## 35 10.892882 0.5596594 0.06383451 1.868936e-02 -153.2 310
## 36 3.188119 0.1660479 0.26993030 9.700421e-04 -110.2 224
## 37 4.371709 0.3502972 0.20362687 1.126646e-02 -147.2 298
## 38 6.085219 0.3393245 0.14491620 7.578039e-03 -98.5 201
## 39 12.385986 0.3866593 0.07246639 5.139799e-03 -118.5 241
## 40 10.178917 0.4870295 0.06471182 1.635804e-02 -112.8 230
## 41 11.352047 0.3206793 0.09711885 1.921016e-03 -114.5 233
## 42 7.710750 0.2394130 0.14872996 7.326872e-04 -99.4 203
## 43 9.645200 0.3847819 0.11178011 4.413639e-03 -108.6 221
## 44 10.230673 0.4262780 0.07199986 1.096505e-02 -117.3 239
## 45 5.061575 0.2668669 0.23682017 1.550829e-03 -89.3 183
## 46 7.897621 0.2564163 0.12936774 1.492113e-03 -105.7 215
## 47 7.953374 0.2377813 0.15241271 5.365022e-04 -99.5 203
## 48 7.778570 0.2671636 0.16872944 6.950097e-04 -87.3 179
## 49 8.633566 0.3047141 0.13650874 1.691235e-03 -94.9 194
## 50 10.130041 0.4034725 0.11074093 4.400827e-03 -102.1 208
## 51 6.891691 0.2124879 0.12479182 1.444821e-03 -104.8 214
## 52 10.680576 0.3252967 0.11430051 1.577003e-03 -111.0 226
## 53 7.906130 0.2833738 0.12802240 2.259762e-03 -105.6 215
## 54 14.204621 0.3513097 0.08489598 1.638453e-03 -119.4 243
## WeibShapeFlex WeibRateFlex WeibLogLikFlex WeibAICFlex BestModel
## 1 3.261288 36.32122 -113.0 230 Weib
## 2 3.765034 29.99508 -106.8 218 Gomp
## 3 4.054009 37.86399 -110.8 226 <2
## 4 4.548007 35.57140 -105.8 216 <2
## 5 3.280775 38.76066 -114.8 234 Weib
## 6 2.887681 28.00442 -205.0 414 Weib
## 7 4.455201 26.99855 -158.5 321 Weib
## 8 4.514794 39.02985 -142.0 288 Gomp
## 9 2.992231 42.69465 -148.7 301 Weib
## 10 5.027798 30.41238 -96.3 197 Weib
## 11 9.442320 40.16692 -89.2 182 <2
## 12 4.269533 29.49942 -96.7 197 Gomp
## 13 6.562842 38.70434 -97.7 199 Weib
## 14 3.867366 30.11810 -103.8 212 Gomp
## 15 6.405254 38.26809 -97.3 199 Weib
## 16 3.211352 30.47489 -99.7 203 Gomp
## 17 4.375519 40.57677 -112.1 228 Gomp
## 18 3.146918 36.73987 -117.2 238 Gomp
## 19 5.392529 37.10399 -102.3 209 <2
## 20 2.810727 40.81549 -122.5 249 Gomp
## 21 4.045783 48.91572 -114.4 233 <2
## 22 2.470620 39.09320 -163.9 332 Weib
## 23 3.360932 35.71519 -151.4 307 <2
## 24 4.004311 40.53145 -111.9 228 Weib
## 25 2.909731 35.65364 -116.4 237 Weib
## 26 4.036826 48.37379 -119.3 243 Gomp
## 27 2.250964 25.65845 -112.8 230 <2
## 28 1.954315 24.80903 -118.7 241 Weib
## 29 2.506113 14.06274 -96.1 196 <2
## 30 2.280870 17.85698 -101.2 206 Weib
## 31 2.760441 28.54233 -153.9 312 Gomp
## 32 2.792964 29.42942 -153.3 311 <2
## 33 4.043804 14.14174 -98.2 200 Weib
## 34 2.681618 17.78053 -129.8 264 Weib
## 35 1.743683 21.63084 -155.6 315 Gomp
## 36 5.940896 20.56914 -105.8 216 Weib
## 37 3.146271 13.96559 -143.6 291 Weib
## 38 3.215089 19.97318 -96.4 197 Weib
## 39 2.869141 35.94135 -117.3 239 Weib
## 40 2.228588 23.68764 -109.7 223 Weib
## 41 3.661056 39.35057 -114.5 233 <2
## 42 5.018631 35.06636 -99.3 203 <2
## 43 2.982129 28.05650 -110.1 224 Gomp
## 44 2.437297 26.79805 -116.6 237 Weib
## 45 4.501854 20.75329 -90.5 185 Gomp
## 46 4.432582 33.80532 -104.0 212 Weib
## 47 5.195892 36.42391 -99.8 204 <2
## 48 4.758210 31.89759 -88.8 182 Gomp
## 49 3.948049 31.35905 -95.5 195 <2
## 50 2.767603 28.06295 -104.8 214 Gomp
## 51 4.912670 35.14447 -101.2 206 Weib
## 52 3.710021 36.43191 -112.7 229 Gomp
## 53 3.965354 30.79124 -104.2 212 Weib
## 54 3.418825 45.13994 -121.1 246 Gomp
report[,c("files", "BestModel","CV", "GompAICFlex", "WeibAICFlex", "GompLogLikFlex", "WeibLogLikFlex")]
## files BestModel CV GompAICFlex
## 1 010305.BY4743.rls.tab Weib 0.3275239 238
## 2 010305.M34.rls.tab Gomp 0.3285451 213
## 3 010305.YPS128.rls.tab <2 0.2925638 226
## 4 010305.YPS163.rls.tab <2 0.2632176 216
## 5 011705.BY4743.rls.tab Weib 0.3231211 242
## 6 011705.M2-8.rls.tab Weib 0.3832243 416
## 7 020105.M2-8.rls.tab Weib 0.2515802 327
## 8 020105.YPS128.rls.tab Gomp 0.2691877 286
## 9 020205.M5.rls.tab Weib 0.3625955 309
## 10 020905.M32.rls.tab Weib 0.2081026 203
## 11 020905.YPS163.rls.tab <2 0.1305185 183
## 12 030105.M34.rls.tab Gomp 0.2808792 190
## 13 030105.YPS163.rls.tab Weib 0.1777497 201
## 14 030205.M13.rls.tab Gomp 0.2830434 199
## 15 030205.M8.rls.tab Weib 0.1728528 202
## 16 030905.M1-2.rls.tab Gomp 0.3613228 201
## 17 030905.M14.rls.tab Gomp 0.2900580 224
## 18 030905.M22.rls.tab Gomp 0.3727032 233
## 19 030905.M8.rls.tab <2 0.2223810 209
## 20 032105.M14.rls.tab Gomp 0.4082715 246
## 21 032105.RM112N.rls.tab <2 0.2913649 233
## 22 040805.M5.rls.tab Weib 0.4428619 336
## 23 040805.YPS163.rls.tab <2 0.3418874 308
## 24 041505.M5.rls.tab Weib 0.2766056 233
## 25 042805.BY4716.rls.tab Weib 0.3803403 240
## 26 042805.RM112N.rls.tab Gomp 0.3037718 239
## 27 042805.SGU57.rls.tab <2 0.4823183 231
## 28 050905.BY4742.rls.tab Weib 0.5311632 244
## 29 050905.sir2D.4742.rls.tab <2 0.4280845 196
## 30 050905.sir2DSIR2.4742.rls.tab Weib 0.4734525 210
## 31 051704.M13.rls.tab Gomp 0.3876441 305
## 32 051704.S288c.rls.tab <2 0.3903690 312
## 33 051805.sir2D.4742.rls.tab Weib 0.2689052 207
## 34 051805.sir2DSIR2.4742.rls.tab Weib 0.4091869 269
## 35 051805.SK1.rls.tab Gomp 0.5596594 310
## 36 051805.W303.rls.tab Weib 0.1660479 224
## 37 052604.sir2D.4741a.rls.tab Weib 0.3502972 298
## 38 052604.W303.rls.tab Weib 0.3393245 201
## 39 053104.BY4741.rls.tab Weib 0.3866593 241
## 40 053104.BY4742.rls.tab Weib 0.4870295 230
## 41 053104.JSBY4741.rls.tab <2 0.3206793 233
## 42 060805.101S.rls.tab <2 0.2394130 203
## 43 060805.SK1.rls.tab Gomp 0.3847819 221
## 44 061004.BY4741.rls.tab Weib 0.4262780 239
## 45 061004.BY4742.rls.tab Gomp 0.2668669 183
## 46 090104.M22.rls.tab Weib 0.2564163 215
## 47 090104.M5.rls.tab <2 0.2377813 203
## 48 091904.101S.rls.tab Gomp 0.2671636 179
## 49 091904.M1-2.rls.tab <2 0.3047141 194
## 50 091904.SGU57.rls.tab Gomp 0.4034725 208
## 51 122004.101S.rls.tab Weib 0.2124879 214
## 52 122004.BY4743.rls.tab Gomp 0.3252967 226
## 53 122004.M32.rls.tab Weib 0.2833738 215
## 54 122004.M5.rls.tab Gomp 0.3513097 243
## WeibAICFlex GompLogLikFlex WeibLogLikFlex
## 1 230 -116.8 -113.0
## 2 218 -104.5 -106.8
## 3 226 -110.8 -110.8
## 4 216 -106.1 -105.8
## 5 234 -118.8 -114.8
## 6 414 -206.0 -205.0
## 7 321 -161.7 -158.5
## 8 288 -141.2 -142.0
## 9 301 -152.7 -148.7
## 10 197 -99.3 -96.3
## 11 182 -89.4 -89.2
## 12 197 -93.1 -96.7
## 13 199 -98.6 -97.7
## 14 212 -97.7 -103.8
## 15 199 -99.0 -97.3
## 16 203 -98.4 -99.7
## 17 228 -109.8 -112.1
## 18 238 -114.6 -117.2
## 19 209 -102.6 -102.3
## 20 249 -121.0 -122.5
## 21 233 -114.5 -114.4
## 22 332 -166.2 -163.9
## 23 307 -152.0 -151.4
## 24 228 -114.3 -111.9
## 25 237 -118.2 -116.4
## 26 243 -117.5 -119.3
## 27 230 -113.4 -112.8
## 28 241 -119.9 -118.7
## 29 196 -96.0 -96.1
## 30 206 -102.9 -101.2
## 31 312 -150.5 -153.9
## 32 311 -154.2 -153.3
## 33 200 -101.6 -98.2
## 34 264 -132.4 -129.8
## 35 315 -153.2 -155.6
## 36 216 -110.2 -105.8
## 37 291 -147.2 -143.6
## 38 197 -98.5 -96.4
## 39 239 -118.5 -117.3
## 40 223 -112.8 -109.7
## 41 233 -114.5 -114.5
## 42 203 -99.4 -99.3
## 43 224 -108.6 -110.1
## 44 237 -117.3 -116.6
## 45 185 -89.3 -90.5
## 46 212 -105.7 -104.0
## 47 204 -99.5 -99.8
## 48 182 -87.3 -88.8
## 49 195 -94.9 -95.5
## 50 214 -102.1 -104.8
## 51 206 -104.8 -101.2
## 52 229 -111.0 -112.7
## 53 212 -105.6 -104.2
## 54 246 -119.4 -121.1
report[,c("files", "BestModel", "GompAICFlex", "WeibAICFlex", "GompLogLikFlex", "WeibLogLikFlex")]
## files BestModel GompAICFlex WeibAICFlex
## 1 010305.BY4743.rls.tab Weib 238 230
## 2 010305.M34.rls.tab Gomp 213 218
## 3 010305.YPS128.rls.tab <2 226 226
## 4 010305.YPS163.rls.tab <2 216 216
## 5 011705.BY4743.rls.tab Weib 242 234
## 6 011705.M2-8.rls.tab Weib 416 414
## 7 020105.M2-8.rls.tab Weib 327 321
## 8 020105.YPS128.rls.tab Gomp 286 288
## 9 020205.M5.rls.tab Weib 309 301
## 10 020905.M32.rls.tab Weib 203 197
## 11 020905.YPS163.rls.tab <2 183 182
## 12 030105.M34.rls.tab Gomp 190 197
## 13 030105.YPS163.rls.tab Weib 201 199
## 14 030205.M13.rls.tab Gomp 199 212
## 15 030205.M8.rls.tab Weib 202 199
## 16 030905.M1-2.rls.tab Gomp 201 203
## 17 030905.M14.rls.tab Gomp 224 228
## 18 030905.M22.rls.tab Gomp 233 238
## 19 030905.M8.rls.tab <2 209 209
## 20 032105.M14.rls.tab Gomp 246 249
## 21 032105.RM112N.rls.tab <2 233 233
## 22 040805.M5.rls.tab Weib 336 332
## 23 040805.YPS163.rls.tab <2 308 307
## 24 041505.M5.rls.tab Weib 233 228
## 25 042805.BY4716.rls.tab Weib 240 237
## 26 042805.RM112N.rls.tab Gomp 239 243
## 27 042805.SGU57.rls.tab <2 231 230
## 28 050905.BY4742.rls.tab Weib 244 241
## 29 050905.sir2D.4742.rls.tab <2 196 196
## 30 050905.sir2DSIR2.4742.rls.tab Weib 210 206
## 31 051704.M13.rls.tab Gomp 305 312
## 32 051704.S288c.rls.tab <2 312 311
## 33 051805.sir2D.4742.rls.tab Weib 207 200
## 34 051805.sir2DSIR2.4742.rls.tab Weib 269 264
## 35 051805.SK1.rls.tab Gomp 310 315
## 36 051805.W303.rls.tab Weib 224 216
## 37 052604.sir2D.4741a.rls.tab Weib 298 291
## 38 052604.W303.rls.tab Weib 201 197
## 39 053104.BY4741.rls.tab Weib 241 239
## 40 053104.BY4742.rls.tab Weib 230 223
## 41 053104.JSBY4741.rls.tab <2 233 233
## 42 060805.101S.rls.tab <2 203 203
## 43 060805.SK1.rls.tab Gomp 221 224
## 44 061004.BY4741.rls.tab Weib 239 237
## 45 061004.BY4742.rls.tab Gomp 183 185
## 46 090104.M22.rls.tab Weib 215 212
## 47 090104.M5.rls.tab <2 203 204
## 48 091904.101S.rls.tab Gomp 179 182
## 49 091904.M1-2.rls.tab <2 194 195
## 50 091904.SGU57.rls.tab Gomp 208 214
## 51 122004.101S.rls.tab Weib 214 206
## 52 122004.BY4743.rls.tab Gomp 226 229
## 53 122004.M32.rls.tab Weib 215 212
## 54 122004.M5.rls.tab Gomp 243 246
## GompLogLikFlex WeibLogLikFlex
## 1 -116.8 -113.0
## 2 -104.5 -106.8
## 3 -110.8 -110.8
## 4 -106.1 -105.8
## 5 -118.8 -114.8
## 6 -206.0 -205.0
## 7 -161.7 -158.5
## 8 -141.2 -142.0
## 9 -152.7 -148.7
## 10 -99.3 -96.3
## 11 -89.4 -89.2
## 12 -93.1 -96.7
## 13 -98.6 -97.7
## 14 -97.7 -103.8
## 15 -99.0 -97.3
## 16 -98.4 -99.7
## 17 -109.8 -112.1
## 18 -114.6 -117.2
## 19 -102.6 -102.3
## 20 -121.0 -122.5
## 21 -114.5 -114.4
## 22 -166.2 -163.9
## 23 -152.0 -151.4
## 24 -114.3 -111.9
## 25 -118.2 -116.4
## 26 -117.5 -119.3
## 27 -113.4 -112.8
## 28 -119.9 -118.7
## 29 -96.0 -96.1
## 30 -102.9 -101.2
## 31 -150.5 -153.9
## 32 -154.2 -153.3
## 33 -101.6 -98.2
## 34 -132.4 -129.8
## 35 -153.2 -155.6
## 36 -110.2 -105.8
## 37 -147.2 -143.6
## 38 -98.5 -96.4
## 39 -118.5 -117.3
## 40 -112.8 -109.7
## 41 -114.5 -114.5
## 42 -99.4 -99.3
## 43 -108.6 -110.1
## 44 -117.3 -116.6
## 45 -89.3 -90.5
## 46 -105.7 -104.0
## 47 -99.5 -99.8
## 48 -87.3 -88.8
## 49 -94.9 -95.5
## 50 -102.1 -104.8
## 51 -104.8 -101.2
## 52 -111.0 -112.7
## 53 -105.6 -104.2
## 54 -119.4 -121.1
CV ~ Gomp and Weibull? How does noises influence likelihood of Gompertz and Weibull fitting?summary(lm(report$CV ~ report$BestModel ))
##
## Call:
## lm(formula = report$CV ~ report$BestModel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.172966 -0.063774 -0.003727 0.053454 0.215896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.30348 0.02578 11.771 3.73e-16 ***
## report$BestModelGomp 0.04028 0.03425 1.176 0.245
## report$BestModelWeib 0.02557 0.03201 0.799 0.428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09296 on 51 degrees of freedom
## Multiple R-squared: 0.02662, Adjusted R-squared: -0.01155
## F-statistic: 0.6973 on 2 and 51 DF, p-value: 0.5026
summary(lm(report$CV ~ report$WeibLogLikFlex ))
##
## Call:
## lm(formula = report$CV ~ report$WeibLogLikFlex)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15227 -0.04636 -0.01465 0.05047 0.19943
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1347941 0.0601566 2.241 0.02934 *
## report$WeibLogLikFlex -0.0016591 0.0005082 -3.265 0.00194 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08501 on 52 degrees of freedom
## Multiple R-squared: 0.1701, Adjusted R-squared: 0.1541
## F-statistic: 10.66 on 1 and 52 DF, p-value: 0.001941
summary(lm(report$CV ~ report$GompLogLikFlex ))
##
## Call:
## lm(formula = report$CV ~ report$GompLogLikFlex)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15432 -0.04772 -0.01208 0.04978 0.19843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1444593 0.0599704 2.409 0.01958 *
## report$GompLogLikFlex -0.0015703 0.0005046 -3.112 0.00302 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08567 on 52 degrees of freedom
## Multiple R-squared: 0.157, Adjusted R-squared: 0.1408
## F-statistic: 9.685 on 1 and 52 DF, p-value: 0.003017
summary(lm(report$CV ~ (report$GompLogLikFlex - report$WeibLogLikFlex)))
##
## Call:
## lm(formula = report$CV ~ (report$GompLogLikFlex - report$WeibLogLikFlex))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15432 -0.04772 -0.01208 0.04978 0.19843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1444593 0.0599704 2.409 0.01958 *
## report$GompLogLikFlex -0.0015703 0.0005046 -3.112 0.00302 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08567 on 52 degrees of freedom
## Multiple R-squared: 0.157, Adjusted R-squared: 0.1408
## F-statistic: 9.685 on 1 and 52 DF, p-value: 0.003017
plot( report$GompLogLikFlex ~ report$CV, col="red", pch=3, xlim=c(0, 0.8), ylim=c(-220, -80))
points( report$CV, report$WeibLogLikFlex, col="blue", pch=4)
m1 = lm( report$GompLogLikFlex ~ report$CV)
m2 = lm( report$WeibLogLikFlex ~ report$CV)
abline( m1, col="red", lty=2)
abline( m2, col='blue', lty=1)
text(0.6, -210, "nearly the same!?")
The QIN-RLS data suggested that noisy system signal perfer Gompertz model, based on GG01 theory. Notice that CV measures distrubition of system signals and are different from white noises (errors)
report$DeltaGompWeiLLH = report$GompLogLikFlex - report$WeibLogLikFlex
plot( report$DeltaGompWeiLLH ~ report$CV )
m3 = lm( report$DeltaGompWeiLLH ~ report$CV)
abline(m3, col='red')
Show the results
report
## files R t0 n avgLS
## 1 010305.BY4743.rls.tab 0.003361728 51.84926 6.986795 32.56667
## 2 010305.M34.rls.tab 0.002281149 27.19448 6.315472 27.00000
## 3 010305.YPS128.rls.tab 0.004208781 35.91839 5.003790 34.30000
## 4 010305.YPS163.rls.tab 0.001973314 29.91767 6.129599 32.40000
## 5 011705.BY4743.rls.tab 0.003199692 56.68345 7.020039 34.80000
## 6 011705.M2-8.rls.tab 0.004309832 40.19223 6.888514 24.96429
## 7 020105.M2-8.rls.tab 0.002100836 24.96629 6.782559 24.63265
## 8 020105.YPS128.rls.tab 0.003198883 31.92006 5.003532 35.53846
## 9 020205.M5.rls.tab 0.003607006 69.39799 6.950697 38.10811
## 10 020905.M32.rls.tab 0.004377059 25.52056 5.004739 28.03333
## 11 020905.YPS163.rls.tab 0.001118296 16.35315 5.001654 38.06667
## 12 030105.M34.rls.tab 0.003961421 23.40804 5.004505 27.03571
## 13 030105.YPS163.rls.tab 0.001921115 22.98321 5.002596 36.06667
## 14 030205.M13.rls.tab 0.002041629 24.67678 6.151194 27.79310
## 15 030205.M8.rls.tab 0.002059049 24.20832 5.002678 35.70000
## 16 030905.M1-2.rls.tab 0.006986271 35.56665 5.003291 27.33333
## 17 030905.M14.rls.tab 0.002795597 31.69570 5.003190 36.83333
## 18 030905.M22.rls.tab 0.005151605 39.94654 5.003192 32.86667
## 19 030905.M8.rls.tab 0.002583361 26.17782 5.003157 34.16667
## 20 032105.M14.rls.tab 0.003135334 53.10912 6.399874 36.26667
## 21 032105.RM112N.rls.tab 0.003270878 45.59994 5.003008 44.27586
## 22 040805.M5.rls.tab 0.009506987 74.89056 5.001534 34.57500
## 23 040805.YPS163.rls.tab 0.006231753 42.59927 5.004125 32.00000
## 24 041505.M5.rls.tab 0.002107127 43.50023 6.667947 36.80000
## 25 042805.BY4716.rls.tab 0.003931803 55.09461 6.888677 31.76667
## 26 042805.RM112N.rls.tab 0.003034956 43.87268 5.003003 43.86667
## 27 042805.SGU57.rls.tab 0.009287234 53.31357 6.523759 22.70000
## 28 050905.BY4742.rls.tab 0.015187375 75.50504 6.345264 22.09677
## 29 050905.sir2D.4742.rls.tab 0.011968830 25.04875 6.929371 12.54839
## 30 050905.sir2DSIR2.4742.rls.tab 0.014314338 39.37424 6.568399 15.80000
## 31 051704.M13.rls.tab 0.003702579 38.12647 6.828330 25.65854
## 32 051704.S288c.rls.tab 0.004622237 45.92097 6.953311 26.26829
## 33 051805.sir2D.4742.rls.tab 0.003326837 14.51431 7.435202 12.83784
## 34 051805.sir2DSIR2.4742.rls.tab 0.009062209 30.52449 6.920478 15.77500
## 35 051805.SK1.rls.tab 0.016208627 62.59829 6.297356 19.46341
## 36 051805.W303.rls.tab 0.004902812 14.81653 5.006306 19.20000
## 37 052604.sir2D.4741a.rls.tab 0.006931647 19.30151 7.256420 12.48000
## 38 052604.W303.rls.tab 0.004830018 27.36559 7.252533 17.93333
## 39 053104.BY4741.rls.tab 0.003897944 55.09940 6.865935 32.03333
## 40 053104.BY4742.rls.tab 0.013531169 61.72988 6.492899 20.90000
## 41 053104.JSBY4741.rls.tab 0.002301507 41.09508 6.395818 35.40000
## 42 060805.101S.rls.tab 0.003189098 26.89393 5.003689 32.20690
## 43 060805.SK1.rls.tab 0.003586238 35.64948 6.775244 25.06667
## 44 061004.BY4741.rls.tab 0.007837809 55.44565 6.952965 24.00000
## 45 061004.BY4742.rls.tab 0.005960546 16.88916 5.006873 18.96667
## 46 090104.M22.rls.tab 0.002029863 30.79522 6.436227 30.80000
## 47 090104.M5.rls.tab 0.002727043 26.24409 5.003288 33.44828
## 48 091904.101S.rls.tab 0.003274548 23.70610 5.003873 29.11538
## 49 091904.M1-2.rls.tab 0.002276024 29.17914 6.373190 28.33333
## 50 091904.SGU57.rls.tab 0.003780261 35.99534 6.702348 25.10714
## 51 122004.101S.rls.tab 0.004350692 32.05298 5.004511 32.43333
## 52 122004.BY4743.rls.tab 0.004414673 34.99516 5.003808 32.83333
## 53 122004.M32.rls.tab 0.002369105 31.09866 6.678197 27.90000
## 54 122004.M5.rls.tab 0.004086084 47.11631 5.002861 40.43333
## stdLS CV GompGFlex GompRFlex GompLogLikFlex GompAICFlex
## 1 10.666361 0.3275239 0.07697842 4.520672e-03 -116.8 238
## 2 8.870719 0.3285451 0.14641276 1.602638e-03 -104.5 213
## 3 10.034939 0.2925638 0.11136263 1.483120e-03 -110.8 226
## 4 8.528249 0.2632176 0.13323490 1.056716e-03 -106.1 216
## 5 11.244616 0.3231211 0.07043570 4.463297e-03 -118.8 242
## 6 9.566921 0.3832243 0.09917977 5.775350e-03 -206.0 416
## 7 6.197089 0.2515802 0.15850580 2.018556e-03 -161.7 327
## 8 9.566515 0.2691877 0.12531128 8.467668e-04 -141.2 286
## 9 13.817830 0.3625955 0.05756788 4.894747e-03 -152.7 309
## 10 5.833810 0.2081026 0.15673277 1.227489e-03 -99.3 203
## 11 4.968406 0.1305185 0.24459288 1.249275e-05 -89.4 183
## 12 7.593770 0.2808792 0.17087720 9.632527e-04 -93.1 190
## 13 6.410839 0.1777497 0.17403638 1.910733e-04 -98.6 201
## 14 7.866653 0.2830434 0.16127313 1.059086e-03 -97.7 199
## 15 6.170844 0.1728528 0.16522928 2.747861e-04 -99.0 202
## 16 9.876156 0.3613228 0.11246404 3.283654e-03 -98.4 201
## 17 10.683804 0.2900580 0.12619877 6.691071e-04 -109.8 224
## 18 12.249513 0.3727032 0.10013325 2.220664e-03 -114.6 233
## 19 7.598018 0.2223810 0.15279846 4.799010e-04 -102.6 209
## 20 14.806647 0.4082715 0.07521646 3.146350e-03 -121.0 246
## 21 12.900433 0.2913649 0.08771906 1.080074e-03 -114.5 233
## 22 15.311949 0.4428619 0.05341122 6.731125e-03 -166.2 336
## 23 10.940398 0.3418874 0.09389769 3.011183e-03 -152.0 308
## 24 10.179086 0.2766056 0.09173172 2.061227e-03 -114.3 233
## 25 12.082142 0.3803403 0.07246963 5.281817e-03 -118.2 240
## 26 13.325457 0.3037718 0.09117251 9.902588e-04 -117.5 239
## 27 10.948626 0.4823183 0.07490550 1.132399e-02 -113.4 231
## 28 11.736992 0.5311632 0.05293360 1.766844e-02 -119.9 244
## 29 5.371770 0.4280845 0.15825671 1.688167e-02 -96.0 196
## 30 7.480549 0.4734525 0.10126119 1.775066e-02 -102.9 210
## 31 9.946381 0.3876441 0.10454519 4.730819e-03 -150.5 305
## 32 10.254327 0.3903690 0.08686882 6.451205e-03 -154.2 312
## 33 3.452161 0.2689052 0.26717114 5.645344e-03 -101.6 207
## 34 6.454923 0.4091869 0.13022750 1.273026e-02 -132.4 269
## 35 10.892882 0.5596594 0.06383451 1.868936e-02 -153.2 310
## 36 3.188119 0.1660479 0.26993030 9.700421e-04 -110.2 224
## 37 4.371709 0.3502972 0.20362687 1.126646e-02 -147.2 298
## 38 6.085219 0.3393245 0.14491620 7.578039e-03 -98.5 201
## 39 12.385986 0.3866593 0.07246639 5.139799e-03 -118.5 241
## 40 10.178917 0.4870295 0.06471182 1.635804e-02 -112.8 230
## 41 11.352047 0.3206793 0.09711885 1.921016e-03 -114.5 233
## 42 7.710750 0.2394130 0.14872996 7.326872e-04 -99.4 203
## 43 9.645200 0.3847819 0.11178011 4.413639e-03 -108.6 221
## 44 10.230673 0.4262780 0.07199986 1.096505e-02 -117.3 239
## 45 5.061575 0.2668669 0.23682017 1.550829e-03 -89.3 183
## 46 7.897621 0.2564163 0.12936774 1.492113e-03 -105.7 215
## 47 7.953374 0.2377813 0.15241271 5.365022e-04 -99.5 203
## 48 7.778570 0.2671636 0.16872944 6.950097e-04 -87.3 179
## 49 8.633566 0.3047141 0.13650874 1.691235e-03 -94.9 194
## 50 10.130041 0.4034725 0.11074093 4.400827e-03 -102.1 208
## 51 6.891691 0.2124879 0.12479182 1.444821e-03 -104.8 214
## 52 10.680576 0.3252967 0.11430051 1.577003e-03 -111.0 226
## 53 7.906130 0.2833738 0.12802240 2.259762e-03 -105.6 215
## 54 14.204621 0.3513097 0.08489598 1.638453e-03 -119.4 243
## WeibShapeFlex WeibRateFlex WeibLogLikFlex WeibAICFlex BestModel
## 1 3.261288 36.32122 -113.0 230 Weib
## 2 3.765034 29.99508 -106.8 218 Gomp
## 3 4.054009 37.86399 -110.8 226 <2
## 4 4.548007 35.57140 -105.8 216 <2
## 5 3.280775 38.76066 -114.8 234 Weib
## 6 2.887681 28.00442 -205.0 414 Weib
## 7 4.455201 26.99855 -158.5 321 Weib
## 8 4.514794 39.02985 -142.0 288 Gomp
## 9 2.992231 42.69465 -148.7 301 Weib
## 10 5.027798 30.41238 -96.3 197 Weib
## 11 9.442320 40.16692 -89.2 182 <2
## 12 4.269533 29.49942 -96.7 197 Gomp
## 13 6.562842 38.70434 -97.7 199 Weib
## 14 3.867366 30.11810 -103.8 212 Gomp
## 15 6.405254 38.26809 -97.3 199 Weib
## 16 3.211352 30.47489 -99.7 203 Gomp
## 17 4.375519 40.57677 -112.1 228 Gomp
## 18 3.146918 36.73987 -117.2 238 Gomp
## 19 5.392529 37.10399 -102.3 209 <2
## 20 2.810727 40.81549 -122.5 249 Gomp
## 21 4.045783 48.91572 -114.4 233 <2
## 22 2.470620 39.09320 -163.9 332 Weib
## 23 3.360932 35.71519 -151.4 307 <2
## 24 4.004311 40.53145 -111.9 228 Weib
## 25 2.909731 35.65364 -116.4 237 Weib
## 26 4.036826 48.37379 -119.3 243 Gomp
## 27 2.250964 25.65845 -112.8 230 <2
## 28 1.954315 24.80903 -118.7 241 Weib
## 29 2.506113 14.06274 -96.1 196 <2
## 30 2.280870 17.85698 -101.2 206 Weib
## 31 2.760441 28.54233 -153.9 312 Gomp
## 32 2.792964 29.42942 -153.3 311 <2
## 33 4.043804 14.14174 -98.2 200 Weib
## 34 2.681618 17.78053 -129.8 264 Weib
## 35 1.743683 21.63084 -155.6 315 Gomp
## 36 5.940896 20.56914 -105.8 216 Weib
## 37 3.146271 13.96559 -143.6 291 Weib
## 38 3.215089 19.97318 -96.4 197 Weib
## 39 2.869141 35.94135 -117.3 239 Weib
## 40 2.228588 23.68764 -109.7 223 Weib
## 41 3.661056 39.35057 -114.5 233 <2
## 42 5.018631 35.06636 -99.3 203 <2
## 43 2.982129 28.05650 -110.1 224 Gomp
## 44 2.437297 26.79805 -116.6 237 Weib
## 45 4.501854 20.75329 -90.5 185 Gomp
## 46 4.432582 33.80532 -104.0 212 Weib
## 47 5.195892 36.42391 -99.8 204 <2
## 48 4.758210 31.89759 -88.8 182 Gomp
## 49 3.948049 31.35905 -95.5 195 <2
## 50 2.767603 28.06295 -104.8 214 Gomp
## 51 4.912670 35.14447 -101.2 206 Weib
## 52 3.710021 36.43191 -112.7 229 Gomp
## 53 3.965354 30.79124 -104.2 212 Weib
## 54 3.418825 45.13994 -121.1 246 Gomp
## DeltaGompWeiLLH
## 1 -3.8
## 2 2.3
## 3 0.0
## 4 -0.3
## 5 -4.0
## 6 -1.0
## 7 -3.2
## 8 0.8
## 9 -4.0
## 10 -3.0
## 11 -0.2
## 12 3.6
## 13 -0.9
## 14 6.1
## 15 -1.7
## 16 1.3
## 17 2.3
## 18 2.6
## 19 -0.3
## 20 1.5
## 21 -0.1
## 22 -2.3
## 23 -0.6
## 24 -2.4
## 25 -1.8
## 26 1.8
## 27 -0.6
## 28 -1.2
## 29 0.1
## 30 -1.7
## 31 3.4
## 32 -0.9
## 33 -3.4
## 34 -2.6
## 35 2.4
## 36 -4.4
## 37 -3.6
## 38 -2.1
## 39 -1.2
## 40 -3.1
## 41 0.0
## 42 -0.1
## 43 1.5
## 44 -0.7
## 45 1.2
## 46 -1.7
## 47 0.3
## 48 1.5
## 49 0.6
## 50 2.7
## 51 -3.6
## 52 1.7
## 53 -1.4
## 54 1.7
TODO: Calculate the white noises (fitting errors) using the fitting residues for Gompertz and Weibull models.# report$residues ??
No comments:
Post a Comment