Wednesday, July 6, 2016

*** Fit Qinlab strains with binomial aging model

Summary: 'n' are mostly 5-7 and 't0' are often large than average lifespan. A encouraging results. 


rm(list=ls())
setwd("~/github/0.network.aging.prj.bmc/0a.rls.fitting")
library('flexsurv')
## Warning: package 'flexsurv' was built under R version 3.2.4
## Loading required package: survival
## Warning: package 'survival' was built under R version 3.2.5
source("lifespan.r")

Fit with Flexsurv.

files = list.files(path="../qinlab_rls/", pattern="rls.tab")
report = data.frame(cbind(files))
report$R=NA; report$t0=NA; report$n=NA;

i=2
  tb = read.table( paste("../qinlab_rls/",files[i],sep=''), sep="\t")
  GompFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'gompertz')
  WeibFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'weibull')
str(GompFlex)
## List of 28
##  $ call          : language flexsurvreg(formula = Surv(tb[, 1]) ~ 1, dist = "gompertz")
##  $ dlist         :List of 6
##   ..$ name          : chr "gompertz"
##   ..$ pars          : chr [1:2] "shape" "rate"
##   ..$ location      : chr "rate"
##   ..$ transforms    :List of 2
##   .. ..$ :function (x)  
##   .. ..$ :function (x, base = exp(1))  
##   ..$ inv.transforms:List of 2
##   .. ..$ :function (x)  
##   .. ..$ :function (x)  
##   ..$ inits         :function (t, mf, mml, aux)  
##  $ aux           : NULL
##  $ ncovs         : int 0
##  $ ncoveffs      : int 0
##  $ mx            :List of 2
##   ..$ rate : int(0) 
##   ..$ shape: NULL
##  $ basepars      : int [1:2] 1 2
##  $ covpars       : NULL
##  $ AIC           : num 213
##  $ data          :List of 3
##   ..$ Y  : num [1:30, 1:6] 10 10 11 14 15 15 16 22 24 25 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
##   .. .. ..$ : chr [1:6] "time" "status" "start" "stop" ...
##   ..$ m  :'data.frame':  30 obs. of  2 variables:
##   .. ..$ Surv(tb[, 1]): Surv [1:30, 1:2] 10  10  11  14  15  15  16  22  24  25  ...
##   .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. ..$ : NULL
##   .. .. .. ..$ : chr [1:2] "time" "status"
##   .. .. ..- attr(*, "type")= chr "right"
##   .. ..$ (weights)    : num [1:30] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. .. .. ..- attr(*, "variables")= language list(Surv(tb[, 1]))
##   .. .. .. ..- attr(*, "factors")= int(0) 
##   .. .. .. ..- attr(*, "term.labels")= chr(0) 
##   .. .. .. ..- attr(*, "order")= int(0) 
##   .. .. .. ..- attr(*, "intercept")= int 1
##   .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. ..- attr(*, "predvars")= language list(Surv(tb[, 1]))
##   .. .. .. ..- attr(*, "dataClasses")= Named chr "nmatrix.2"
##   .. .. .. .. ..- attr(*, "names")= chr "Surv(tb[, 1])"
##   .. ..- attr(*, "covnames")= chr(0) 
##   .. ..- attr(*, "covnames.orig")= chr(0) 
##   ..$ mml:List of 2
##   .. ..$ rate : num [1:30, 1] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
##   .. .. .. ..$ : chr "(Intercept)"
##   .. .. ..- attr(*, "assign")= int 0
##   .. ..$ shape: NULL
##  $ datameans     : num(0) 
##  $ N             : int 30
##  $ events        : int 30
##  $ trisk         : num 810
##  $ concat.formula:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. ..- attr(*, "covnames")= chr(0) 
##   .. ..- attr(*, "covnames.orig")= chr(0) 
##  $ all.formulae  :List of 1
##   ..$ rate:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  $ dfns          :List of 8
##   ..$ p    :function (q, shape, rate = 1, lower.tail = TRUE, log.p = FALSE)  
##   ..$ d    :function (x, shape, rate = 1, log = FALSE)  
##   ..$ h    :function (x, shape, rate = 1, log = FALSE)  
##   ..$ H    :function (x, shape, rate = 1, log = FALSE)  
##   ..$ r    :function (n, shape = 1, rate = 1)  
##   ..$ DLd  :function (t, shape, rate)  
##   ..$ DLS  :function (t, shape, rate)  
##   ..$ deriv: logi TRUE
##  $ res           : num [1:2, 1:4] 0.146413 0.001603 0.098752 0.000421 0.194074 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "rate"
##   .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
##  $ res.t         : num [1:2, 1:4] 0.1464 -6.4361 0.0988 -7.7719 0.1941 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "rate"
##   .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
##  $ cov           : num [1:2, 1:2] 0.000591 -0.015967 -0.015967 0.464473
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "rate"
##   .. ..$ : chr [1:2] "shape" "rate"
##  $ coefficients  : Named num [1:2] 0.146 -6.436
##   ..- attr(*, "names")= chr [1:2] "shape" "rate"
##  $ npars         : int 2
##  $ fixedpars     : NULL
##  $ optpars       : int [1:2] 1 2
##  $ loglik        : num -104
##  $ logliki       : num [1:30] -5.01 -5.01 -4.87 -4.46 -4.33 ...
##  $ cl            : num 0.95
##  $ opt           :List of 6
##   ..$ par        : Named num [1:2] 0.146 -6.436
##   .. ..- attr(*, "names")= chr [1:2] "shape" "rate"
##   ..$ value      : num 104
##   ..$ counts     : Named int [1:2] 35 10
##   .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
##   ..$ convergence: int 0
##   ..$ message    : NULL
##   ..$ hessian    : num [1:2, 1:2] 23564 810 810 30
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:2] "shape" "rate"
##   .. .. ..$ : chr [1:2] "shape" "rate"
##  - attr(*, "class")= chr "flexsurvreg"
GompFlex$res
##               est         L95%        U95%          se
## shape 0.146412756 0.0987519623 0.194073550 0.024317178
## rate  0.001602638 0.0004214271 0.006094643 0.001092234
GompFlex$res.t
##              est        L95%       U95%         se
## shape  0.1464128  0.09875196  0.1940735 0.02431718
## rate  -6.4361044 -7.77186373 -5.1003451 0.68152238
GompFlex$opt$hessian
##            shape     rate
## shape 23564.3361 810.0597
## rate    810.0597  30.0000
str(WeibFlex)
## List of 28
##  $ call          : language flexsurvreg(formula = Surv(tb[, 1]) ~ 1, dist = "weibull")
##  $ dlist         :List of 6
##   ..$ name          : chr "weibull.quiet"
##   ..$ pars          : chr [1:2] "shape" "scale"
##   ..$ location      : chr "scale"
##   ..$ transforms    :List of 2
##   .. ..$ :function (x, base = exp(1))  
##   .. ..$ :function (x, base = exp(1))  
##   ..$ inv.transforms:List of 2
##   .. ..$ :function (x)  
##   .. ..$ :function (x)  
##   ..$ inits         :function (t, mf, mml, aux)  
##  $ aux           : NULL
##  $ ncovs         : int 0
##  $ ncoveffs      : int 0
##  $ mx            :List of 2
##   ..$ scale: int(0) 
##   ..$ shape: NULL
##  $ basepars      : int [1:2] 1 2
##  $ covpars       : NULL
##  $ AIC           : num 218
##  $ data          :List of 3
##   ..$ Y  : num [1:30, 1:6] 10 10 11 14 15 15 16 22 24 25 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
##   .. .. ..$ : chr [1:6] "time" "status" "start" "stop" ...
##   ..$ m  :'data.frame':  30 obs. of  2 variables:
##   .. ..$ Surv(tb[, 1]): Surv [1:30, 1:2] 10  10  11  14  15  15  16  22  24  25  ...
##   .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. ..$ : NULL
##   .. .. .. ..$ : chr [1:2] "time" "status"
##   .. .. ..- attr(*, "type")= chr "right"
##   .. ..$ (weights)    : num [1:30] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. .. .. ..- attr(*, "variables")= language list(Surv(tb[, 1]))
##   .. .. .. ..- attr(*, "factors")= int(0) 
##   .. .. .. ..- attr(*, "term.labels")= chr(0) 
##   .. .. .. ..- attr(*, "order")= int(0) 
##   .. .. .. ..- attr(*, "intercept")= int 1
##   .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. ..- attr(*, "predvars")= language list(Surv(tb[, 1]))
##   .. .. .. ..- attr(*, "dataClasses")= Named chr "nmatrix.2"
##   .. .. .. .. ..- attr(*, "names")= chr "Surv(tb[, 1])"
##   .. ..- attr(*, "covnames")= chr(0) 
##   .. ..- attr(*, "covnames.orig")= chr(0) 
##   ..$ mml:List of 2
##   .. ..$ scale: num [1:30, 1] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
##   .. .. .. ..$ : chr "(Intercept)"
##   .. .. ..- attr(*, "assign")= int 0
##   .. ..$ shape: NULL
##  $ datameans     : num(0) 
##  $ N             : int 30
##  $ events        : int 30
##  $ trisk         : num 810
##  $ concat.formula:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. ..- attr(*, "covnames")= chr(0) 
##   .. ..- attr(*, "covnames.orig")= chr(0) 
##  $ all.formulae  :List of 1
##   ..$ scale:Class 'formula' length 3 Surv(tb[, 1]) ~ 1
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  $ dfns          :List of 8
##   ..$ p    :function (q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)  
##   ..$ d    :function (x, shape, scale = 1, log = FALSE)  
##   ..$ h    :function (x, ...)  
##   ..$ H    :function (x, ...)  
##   ..$ r    :function (n, shape, scale = 1)  
##   ..$ DLd  :function (t, shape, scale)  
##   ..$ DLS  :function (t, shape, scale)  
##   ..$ deriv: logi TRUE
##  $ res           : num [1:2, 1:4] 3.77 30 2.76 27.17 5.13 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "scale"
##   .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
##  $ res.t         : num [1:2, 1:4] 1.33 3.4 1.02 3.3 1.64 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "scale"
##   .. ..$ : chr [1:4] "est" "L95%" "U95%" "se"
##  $ cov           : num [1:2, 1:2] 0.02502 0.00225 0.00225 0.00255
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "shape" "scale"
##   .. ..$ : chr [1:2] "shape" "scale"
##  $ coefficients  : Named num [1:2] 1.33 3.4
##   ..- attr(*, "names")= chr [1:2] "shape" "scale"
##  $ npars         : int 2
##  $ fixedpars     : NULL
##  $ optpars       : int [1:2] 1 2
##  $ loglik        : num -107
##  $ logliki       : Named num [1:30] -5.13 -5.13 -4.87 -4.24 -4.06 ...
##   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
##  $ cl            : num 0.95
##  $ opt           :List of 6
##   ..$ par        : Named num [1:2] 1.33 3.4
##   .. ..- attr(*, "names")= chr [1:2] "shape" "scale"
##   ..$ value      : num 107
##   ..$ counts     : Named int [1:2] 2 1
##   .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
##   ..$ convergence: int 0
##   ..$ message    : NULL
##   ..$ hessian    : num [1:2, 1:2] 43.4 -38.3 -38.3 425.3
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:2] "shape" "scale"
##   .. .. ..$ : chr [1:2] "shape" "scale"
##  - attr(*, "class")= chr "flexsurvreg"
for( i in 1:length(report[,1])){
#for( i in 3:4){
  tb = read.table( paste("../qinlab_rls/",files[i],sep=''), sep="\t")
  GompFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'gompertz')
  WeibFlex = flexsurvreg(formula = Surv(tb[,1]) ~ 1, dist = 'weibull')

  report$avgLS[i] =  mean(tb[,1])
  report$stdLS[i] =  sd(tb[,1])
  report$CV[i] = report$stdLS[i] / report$avgLS[i]

  report$GompGFlex[i] = GompFlex$res[1,1]
  report$GompRFlex[i] = GompFlex$res[2,1]
  report$GompLogLikFlex[i] = round(GompFlex$loglik, 1)
  report$GompAICFlex[i] = round(GompFlex$AIC)

  report$WeibShapeFlex[i] = WeibFlex$res[1,1]
  report$WeibRateFlex[i] = WeibFlex$res[2,1]
  report$WeibLogLikFlex[i] = round(WeibFlex$loglik, 1)  
  report$WeibAICFlex[i] = round(WeibFlex$AIC)

  Rhat = report$GompRFlex[i]; # 'i' was missing. a bug costed HQ a whole afternoon.
  Ghat = report$GompGFlex[i];
  nhat = 5; 
  t0= (nhat-1)/Ghat;
  fitBinom = optim ( c(Rhat, t0, nhat),  llh.binomialMortality.single.run,
                     lifespan=tb[,1], method="L-BFGS-B", 
                     lower=c(1E-10,0.05, 1), upper=c(10,100,20) );  
  
  report[i, c("R", "t0", "n")] = fitBinom$par[1:3]
}
Gompert versus Weibull? AIC: smaller is better (for information loss)
report$BestModel = ifelse(report$GompAICFlex < report$WeibAICFlex, "Gomp", "Weib")
report$BestModel = ifelse(abs(report$GompAICFlex - report$WeibAICFlex)<2, "<2", report$BestModel)
Show the results
report
##                            files           R       t0        n    avgLS
## 1          010305.BY4743.rls.tab 0.003361728 51.84926 6.986795 32.56667
## 2             010305.M34.rls.tab 0.002281149 27.19448 6.315472 27.00000
## 3          010305.YPS128.rls.tab 0.004208781 35.91839 5.003790 34.30000
## 4          010305.YPS163.rls.tab 0.001973314 29.91767 6.129599 32.40000
## 5          011705.BY4743.rls.tab 0.003199692 56.68345 7.020039 34.80000
## 6            011705.M2-8.rls.tab 0.004309832 40.19223 6.888514 24.96429
## 7            020105.M2-8.rls.tab 0.002100836 24.96629 6.782559 24.63265
## 8          020105.YPS128.rls.tab 0.003198883 31.92006 5.003532 35.53846
## 9              020205.M5.rls.tab 0.003607006 69.39799 6.950697 38.10811
## 10            020905.M32.rls.tab 0.004377059 25.52056 5.004739 28.03333
## 11         020905.YPS163.rls.tab 0.001118296 16.35315 5.001654 38.06667
## 12            030105.M34.rls.tab 0.003961421 23.40804 5.004505 27.03571
## 13         030105.YPS163.rls.tab 0.001921115 22.98321 5.002596 36.06667
## 14            030205.M13.rls.tab 0.002041629 24.67678 6.151194 27.79310
## 15             030205.M8.rls.tab 0.002059049 24.20832 5.002678 35.70000
## 16           030905.M1-2.rls.tab 0.006986271 35.56665 5.003291 27.33333
## 17            030905.M14.rls.tab 0.002795597 31.69570 5.003190 36.83333
## 18            030905.M22.rls.tab 0.005151605 39.94654 5.003192 32.86667
## 19             030905.M8.rls.tab 0.002583361 26.17782 5.003157 34.16667
## 20            032105.M14.rls.tab 0.003135334 53.10912 6.399874 36.26667
## 21         032105.RM112N.rls.tab 0.003270878 45.59994 5.003008 44.27586
## 22             040805.M5.rls.tab 0.009506987 74.89056 5.001534 34.57500
## 23         040805.YPS163.rls.tab 0.006231753 42.59927 5.004125 32.00000
## 24             041505.M5.rls.tab 0.002107127 43.50023 6.667947 36.80000
## 25         042805.BY4716.rls.tab 0.003931803 55.09461 6.888677 31.76667
## 26         042805.RM112N.rls.tab 0.003034956 43.87268 5.003003 43.86667
## 27          042805.SGU57.rls.tab 0.009287234 53.31357 6.523759 22.70000
## 28         050905.BY4742.rls.tab 0.015187375 75.50504 6.345264 22.09677
## 29     050905.sir2D.4742.rls.tab 0.011968830 25.04875 6.929371 12.54839
## 30 050905.sir2DSIR2.4742.rls.tab 0.014314338 39.37424 6.568399 15.80000
## 31            051704.M13.rls.tab 0.003702579 38.12647 6.828330 25.65854
## 32          051704.S288c.rls.tab 0.004622237 45.92097 6.953311 26.26829
## 33     051805.sir2D.4742.rls.tab 0.003326837 14.51431 7.435202 12.83784
## 34 051805.sir2DSIR2.4742.rls.tab 0.009062209 30.52449 6.920478 15.77500
## 35            051805.SK1.rls.tab 0.016208627 62.59829 6.297356 19.46341
## 36           051805.W303.rls.tab 0.004902812 14.81653 5.006306 19.20000
## 37    052604.sir2D.4741a.rls.tab 0.006931647 19.30151 7.256420 12.48000
## 38           052604.W303.rls.tab 0.004830018 27.36559 7.252533 17.93333
## 39         053104.BY4741.rls.tab 0.003897944 55.09940 6.865935 32.03333
## 40         053104.BY4742.rls.tab 0.013531169 61.72988 6.492899 20.90000
## 41       053104.JSBY4741.rls.tab 0.002301507 41.09508 6.395818 35.40000
## 42           060805.101S.rls.tab 0.003189098 26.89393 5.003689 32.20690
## 43            060805.SK1.rls.tab 0.003586238 35.64948 6.775244 25.06667
## 44         061004.BY4741.rls.tab 0.007837809 55.44565 6.952965 24.00000
## 45         061004.BY4742.rls.tab 0.005960546 16.88916 5.006873 18.96667
## 46            090104.M22.rls.tab 0.002029863 30.79522 6.436227 30.80000
## 47             090104.M5.rls.tab 0.002727043 26.24409 5.003288 33.44828
## 48           091904.101S.rls.tab 0.003274548 23.70610 5.003873 29.11538
## 49           091904.M1-2.rls.tab 0.002276024 29.17914 6.373190 28.33333
## 50          091904.SGU57.rls.tab 0.003780261 35.99534 6.702348 25.10714
## 51           122004.101S.rls.tab 0.004350692 32.05298 5.004511 32.43333
## 52         122004.BY4743.rls.tab 0.004414673 34.99516 5.003808 32.83333
## 53            122004.M32.rls.tab 0.002369105 31.09866 6.678197 27.90000
## 54             122004.M5.rls.tab 0.004086084 47.11631 5.002861 40.43333
##        stdLS        CV  GompGFlex    GompRFlex GompLogLikFlex GompAICFlex
## 1  10.666361 0.3275239 0.07697842 4.520672e-03         -116.8         238
## 2   8.870719 0.3285451 0.14641276 1.602638e-03         -104.5         213
## 3  10.034939 0.2925638 0.11136263 1.483120e-03         -110.8         226
## 4   8.528249 0.2632176 0.13323490 1.056716e-03         -106.1         216
## 5  11.244616 0.3231211 0.07043570 4.463297e-03         -118.8         242
## 6   9.566921 0.3832243 0.09917977 5.775350e-03         -206.0         416
## 7   6.197089 0.2515802 0.15850580 2.018556e-03         -161.7         327
## 8   9.566515 0.2691877 0.12531128 8.467668e-04         -141.2         286
## 9  13.817830 0.3625955 0.05756788 4.894747e-03         -152.7         309
## 10  5.833810 0.2081026 0.15673277 1.227489e-03          -99.3         203
## 11  4.968406 0.1305185 0.24459288 1.249275e-05          -89.4         183
## 12  7.593770 0.2808792 0.17087720 9.632527e-04          -93.1         190
## 13  6.410839 0.1777497 0.17403638 1.910733e-04          -98.6         201
## 14  7.866653 0.2830434 0.16127313 1.059086e-03          -97.7         199
## 15  6.170844 0.1728528 0.16522928 2.747861e-04          -99.0         202
## 16  9.876156 0.3613228 0.11246404 3.283654e-03          -98.4         201
## 17 10.683804 0.2900580 0.12619877 6.691071e-04         -109.8         224
## 18 12.249513 0.3727032 0.10013325 2.220664e-03         -114.6         233
## 19  7.598018 0.2223810 0.15279846 4.799010e-04         -102.6         209
## 20 14.806647 0.4082715 0.07521646 3.146350e-03         -121.0         246
## 21 12.900433 0.2913649 0.08771906 1.080074e-03         -114.5         233
## 22 15.311949 0.4428619 0.05341122 6.731125e-03         -166.2         336
## 23 10.940398 0.3418874 0.09389769 3.011183e-03         -152.0         308
## 24 10.179086 0.2766056 0.09173172 2.061227e-03         -114.3         233
## 25 12.082142 0.3803403 0.07246963 5.281817e-03         -118.2         240
## 26 13.325457 0.3037718 0.09117251 9.902588e-04         -117.5         239
## 27 10.948626 0.4823183 0.07490550 1.132399e-02         -113.4         231
## 28 11.736992 0.5311632 0.05293360 1.766844e-02         -119.9         244
## 29  5.371770 0.4280845 0.15825671 1.688167e-02          -96.0         196
## 30  7.480549 0.4734525 0.10126119 1.775066e-02         -102.9         210
## 31  9.946381 0.3876441 0.10454519 4.730819e-03         -150.5         305
## 32 10.254327 0.3903690 0.08686882 6.451205e-03         -154.2         312
## 33  3.452161 0.2689052 0.26717114 5.645344e-03         -101.6         207
## 34  6.454923 0.4091869 0.13022750 1.273026e-02         -132.4         269
## 35 10.892882 0.5596594 0.06383451 1.868936e-02         -153.2         310
## 36  3.188119 0.1660479 0.26993030 9.700421e-04         -110.2         224
## 37  4.371709 0.3502972 0.20362687 1.126646e-02         -147.2         298
## 38  6.085219 0.3393245 0.14491620 7.578039e-03          -98.5         201
## 39 12.385986 0.3866593 0.07246639 5.139799e-03         -118.5         241
## 40 10.178917 0.4870295 0.06471182 1.635804e-02         -112.8         230
## 41 11.352047 0.3206793 0.09711885 1.921016e-03         -114.5         233
## 42  7.710750 0.2394130 0.14872996 7.326872e-04          -99.4         203
## 43  9.645200 0.3847819 0.11178011 4.413639e-03         -108.6         221
## 44 10.230673 0.4262780 0.07199986 1.096505e-02         -117.3         239
## 45  5.061575 0.2668669 0.23682017 1.550829e-03          -89.3         183
## 46  7.897621 0.2564163 0.12936774 1.492113e-03         -105.7         215
## 47  7.953374 0.2377813 0.15241271 5.365022e-04          -99.5         203
## 48  7.778570 0.2671636 0.16872944 6.950097e-04          -87.3         179
## 49  8.633566 0.3047141 0.13650874 1.691235e-03          -94.9         194
## 50 10.130041 0.4034725 0.11074093 4.400827e-03         -102.1         208
## 51  6.891691 0.2124879 0.12479182 1.444821e-03         -104.8         214
## 52 10.680576 0.3252967 0.11430051 1.577003e-03         -111.0         226
## 53  7.906130 0.2833738 0.12802240 2.259762e-03         -105.6         215
## 54 14.204621 0.3513097 0.08489598 1.638453e-03         -119.4         243
##    WeibShapeFlex WeibRateFlex WeibLogLikFlex WeibAICFlex BestModel
## 1       3.261288     36.32122         -113.0         230      Weib
## 2       3.765034     29.99508         -106.8         218      Gomp
## 3       4.054009     37.86399         -110.8         226        <2
## 4       4.548007     35.57140         -105.8         216        <2
## 5       3.280775     38.76066         -114.8         234      Weib
## 6       2.887681     28.00442         -205.0         414      Weib
## 7       4.455201     26.99855         -158.5         321      Weib
## 8       4.514794     39.02985         -142.0         288      Gomp
## 9       2.992231     42.69465         -148.7         301      Weib
## 10      5.027798     30.41238          -96.3         197      Weib
## 11      9.442320     40.16692          -89.2         182        <2
## 12      4.269533     29.49942          -96.7         197      Gomp
## 13      6.562842     38.70434          -97.7         199      Weib
## 14      3.867366     30.11810         -103.8         212      Gomp
## 15      6.405254     38.26809          -97.3         199      Weib
## 16      3.211352     30.47489          -99.7         203      Gomp
## 17      4.375519     40.57677         -112.1         228      Gomp
## 18      3.146918     36.73987         -117.2         238      Gomp
## 19      5.392529     37.10399         -102.3         209        <2
## 20      2.810727     40.81549         -122.5         249      Gomp
## 21      4.045783     48.91572         -114.4         233        <2
## 22      2.470620     39.09320         -163.9         332      Weib
## 23      3.360932     35.71519         -151.4         307        <2
## 24      4.004311     40.53145         -111.9         228      Weib
## 25      2.909731     35.65364         -116.4         237      Weib
## 26      4.036826     48.37379         -119.3         243      Gomp
## 27      2.250964     25.65845         -112.8         230        <2
## 28      1.954315     24.80903         -118.7         241      Weib
## 29      2.506113     14.06274          -96.1         196        <2
## 30      2.280870     17.85698         -101.2         206      Weib
## 31      2.760441     28.54233         -153.9         312      Gomp
## 32      2.792964     29.42942         -153.3         311        <2
## 33      4.043804     14.14174          -98.2         200      Weib
## 34      2.681618     17.78053         -129.8         264      Weib
## 35      1.743683     21.63084         -155.6         315      Gomp
## 36      5.940896     20.56914         -105.8         216      Weib
## 37      3.146271     13.96559         -143.6         291      Weib
## 38      3.215089     19.97318          -96.4         197      Weib
## 39      2.869141     35.94135         -117.3         239      Weib
## 40      2.228588     23.68764         -109.7         223      Weib
## 41      3.661056     39.35057         -114.5         233        <2
## 42      5.018631     35.06636          -99.3         203        <2
## 43      2.982129     28.05650         -110.1         224      Gomp
## 44      2.437297     26.79805         -116.6         237      Weib
## 45      4.501854     20.75329          -90.5         185      Gomp
## 46      4.432582     33.80532         -104.0         212      Weib
## 47      5.195892     36.42391          -99.8         204        <2
## 48      4.758210     31.89759          -88.8         182      Gomp
## 49      3.948049     31.35905          -95.5         195        <2
## 50      2.767603     28.06295         -104.8         214      Gomp
## 51      4.912670     35.14447         -101.2         206      Weib
## 52      3.710021     36.43191         -112.7         229      Gomp
## 53      3.965354     30.79124         -104.2         212      Weib
## 54      3.418825     45.13994         -121.1         246      Gomp
report[,c("files", "BestModel","CV", "GompAICFlex", "WeibAICFlex", "GompLogLikFlex", "WeibLogLikFlex")]
##                            files BestModel        CV GompAICFlex
## 1          010305.BY4743.rls.tab      Weib 0.3275239         238
## 2             010305.M34.rls.tab      Gomp 0.3285451         213
## 3          010305.YPS128.rls.tab        <2 0.2925638         226
## 4          010305.YPS163.rls.tab        <2 0.2632176         216
## 5          011705.BY4743.rls.tab      Weib 0.3231211         242
## 6            011705.M2-8.rls.tab      Weib 0.3832243         416
## 7            020105.M2-8.rls.tab      Weib 0.2515802         327
## 8          020105.YPS128.rls.tab      Gomp 0.2691877         286
## 9              020205.M5.rls.tab      Weib 0.3625955         309
## 10            020905.M32.rls.tab      Weib 0.2081026         203
## 11         020905.YPS163.rls.tab        <2 0.1305185         183
## 12            030105.M34.rls.tab      Gomp 0.2808792         190
## 13         030105.YPS163.rls.tab      Weib 0.1777497         201
## 14            030205.M13.rls.tab      Gomp 0.2830434         199
## 15             030205.M8.rls.tab      Weib 0.1728528         202
## 16           030905.M1-2.rls.tab      Gomp 0.3613228         201
## 17            030905.M14.rls.tab      Gomp 0.2900580         224
## 18            030905.M22.rls.tab      Gomp 0.3727032         233
## 19             030905.M8.rls.tab        <2 0.2223810         209
## 20            032105.M14.rls.tab      Gomp 0.4082715         246
## 21         032105.RM112N.rls.tab        <2 0.2913649         233
## 22             040805.M5.rls.tab      Weib 0.4428619         336
## 23         040805.YPS163.rls.tab        <2 0.3418874         308
## 24             041505.M5.rls.tab      Weib 0.2766056         233
## 25         042805.BY4716.rls.tab      Weib 0.3803403         240
## 26         042805.RM112N.rls.tab      Gomp 0.3037718         239
## 27          042805.SGU57.rls.tab        <2 0.4823183         231
## 28         050905.BY4742.rls.tab      Weib 0.5311632         244
## 29     050905.sir2D.4742.rls.tab        <2 0.4280845         196
## 30 050905.sir2DSIR2.4742.rls.tab      Weib 0.4734525         210
## 31            051704.M13.rls.tab      Gomp 0.3876441         305
## 32          051704.S288c.rls.tab        <2 0.3903690         312
## 33     051805.sir2D.4742.rls.tab      Weib 0.2689052         207
## 34 051805.sir2DSIR2.4742.rls.tab      Weib 0.4091869         269
## 35            051805.SK1.rls.tab      Gomp 0.5596594         310
## 36           051805.W303.rls.tab      Weib 0.1660479         224
## 37    052604.sir2D.4741a.rls.tab      Weib 0.3502972         298
## 38           052604.W303.rls.tab      Weib 0.3393245         201
## 39         053104.BY4741.rls.tab      Weib 0.3866593         241
## 40         053104.BY4742.rls.tab      Weib 0.4870295         230
## 41       053104.JSBY4741.rls.tab        <2 0.3206793         233
## 42           060805.101S.rls.tab        <2 0.2394130         203
## 43            060805.SK1.rls.tab      Gomp 0.3847819         221
## 44         061004.BY4741.rls.tab      Weib 0.4262780         239
## 45         061004.BY4742.rls.tab      Gomp 0.2668669         183
## 46            090104.M22.rls.tab      Weib 0.2564163         215
## 47             090104.M5.rls.tab        <2 0.2377813         203
## 48           091904.101S.rls.tab      Gomp 0.2671636         179
## 49           091904.M1-2.rls.tab        <2 0.3047141         194
## 50          091904.SGU57.rls.tab      Gomp 0.4034725         208
## 51           122004.101S.rls.tab      Weib 0.2124879         214
## 52         122004.BY4743.rls.tab      Gomp 0.3252967         226
## 53            122004.M32.rls.tab      Weib 0.2833738         215
## 54             122004.M5.rls.tab      Gomp 0.3513097         243
##    WeibAICFlex GompLogLikFlex WeibLogLikFlex
## 1          230         -116.8         -113.0
## 2          218         -104.5         -106.8
## 3          226         -110.8         -110.8
## 4          216         -106.1         -105.8
## 5          234         -118.8         -114.8
## 6          414         -206.0         -205.0
## 7          321         -161.7         -158.5
## 8          288         -141.2         -142.0
## 9          301         -152.7         -148.7
## 10         197          -99.3          -96.3
## 11         182          -89.4          -89.2
## 12         197          -93.1          -96.7
## 13         199          -98.6          -97.7
## 14         212          -97.7         -103.8
## 15         199          -99.0          -97.3
## 16         203          -98.4          -99.7
## 17         228         -109.8         -112.1
## 18         238         -114.6         -117.2
## 19         209         -102.6         -102.3
## 20         249         -121.0         -122.5
## 21         233         -114.5         -114.4
## 22         332         -166.2         -163.9
## 23         307         -152.0         -151.4
## 24         228         -114.3         -111.9
## 25         237         -118.2         -116.4
## 26         243         -117.5         -119.3
## 27         230         -113.4         -112.8
## 28         241         -119.9         -118.7
## 29         196          -96.0          -96.1
## 30         206         -102.9         -101.2
## 31         312         -150.5         -153.9
## 32         311         -154.2         -153.3
## 33         200         -101.6          -98.2
## 34         264         -132.4         -129.8
## 35         315         -153.2         -155.6
## 36         216         -110.2         -105.8
## 37         291         -147.2         -143.6
## 38         197          -98.5          -96.4
## 39         239         -118.5         -117.3
## 40         223         -112.8         -109.7
## 41         233         -114.5         -114.5
## 42         203          -99.4          -99.3
## 43         224         -108.6         -110.1
## 44         237         -117.3         -116.6
## 45         185          -89.3          -90.5
## 46         212         -105.7         -104.0
## 47         204          -99.5          -99.8
## 48         182          -87.3          -88.8
## 49         195          -94.9          -95.5
## 50         214         -102.1         -104.8
## 51         206         -104.8         -101.2
## 52         229         -111.0         -112.7
## 53         212         -105.6         -104.2
## 54         246         -119.4         -121.1
report[,c("files", "BestModel", "GompAICFlex", "WeibAICFlex", "GompLogLikFlex", "WeibLogLikFlex")]
##                            files BestModel GompAICFlex WeibAICFlex
## 1          010305.BY4743.rls.tab      Weib         238         230
## 2             010305.M34.rls.tab      Gomp         213         218
## 3          010305.YPS128.rls.tab        <2         226         226
## 4          010305.YPS163.rls.tab        <2         216         216
## 5          011705.BY4743.rls.tab      Weib         242         234
## 6            011705.M2-8.rls.tab      Weib         416         414
## 7            020105.M2-8.rls.tab      Weib         327         321
## 8          020105.YPS128.rls.tab      Gomp         286         288
## 9              020205.M5.rls.tab      Weib         309         301
## 10            020905.M32.rls.tab      Weib         203         197
## 11         020905.YPS163.rls.tab        <2         183         182
## 12            030105.M34.rls.tab      Gomp         190         197
## 13         030105.YPS163.rls.tab      Weib         201         199
## 14            030205.M13.rls.tab      Gomp         199         212
## 15             030205.M8.rls.tab      Weib         202         199
## 16           030905.M1-2.rls.tab      Gomp         201         203
## 17            030905.M14.rls.tab      Gomp         224         228
## 18            030905.M22.rls.tab      Gomp         233         238
## 19             030905.M8.rls.tab        <2         209         209
## 20            032105.M14.rls.tab      Gomp         246         249
## 21         032105.RM112N.rls.tab        <2         233         233
## 22             040805.M5.rls.tab      Weib         336         332
## 23         040805.YPS163.rls.tab        <2         308         307
## 24             041505.M5.rls.tab      Weib         233         228
## 25         042805.BY4716.rls.tab      Weib         240         237
## 26         042805.RM112N.rls.tab      Gomp         239         243
## 27          042805.SGU57.rls.tab        <2         231         230
## 28         050905.BY4742.rls.tab      Weib         244         241
## 29     050905.sir2D.4742.rls.tab        <2         196         196
## 30 050905.sir2DSIR2.4742.rls.tab      Weib         210         206
## 31            051704.M13.rls.tab      Gomp         305         312
## 32          051704.S288c.rls.tab        <2         312         311
## 33     051805.sir2D.4742.rls.tab      Weib         207         200
## 34 051805.sir2DSIR2.4742.rls.tab      Weib         269         264
## 35            051805.SK1.rls.tab      Gomp         310         315
## 36           051805.W303.rls.tab      Weib         224         216
## 37    052604.sir2D.4741a.rls.tab      Weib         298         291
## 38           052604.W303.rls.tab      Weib         201         197
## 39         053104.BY4741.rls.tab      Weib         241         239
## 40         053104.BY4742.rls.tab      Weib         230         223
## 41       053104.JSBY4741.rls.tab        <2         233         233
## 42           060805.101S.rls.tab        <2         203         203
## 43            060805.SK1.rls.tab      Gomp         221         224
## 44         061004.BY4741.rls.tab      Weib         239         237
## 45         061004.BY4742.rls.tab      Gomp         183         185
## 46            090104.M22.rls.tab      Weib         215         212
## 47             090104.M5.rls.tab        <2         203         204
## 48           091904.101S.rls.tab      Gomp         179         182
## 49           091904.M1-2.rls.tab        <2         194         195
## 50          091904.SGU57.rls.tab      Gomp         208         214
## 51           122004.101S.rls.tab      Weib         214         206
## 52         122004.BY4743.rls.tab      Gomp         226         229
## 53            122004.M32.rls.tab      Weib         215         212
## 54             122004.M5.rls.tab      Gomp         243         246
##    GompLogLikFlex WeibLogLikFlex
## 1          -116.8         -113.0
## 2          -104.5         -106.8
## 3          -110.8         -110.8
## 4          -106.1         -105.8
## 5          -118.8         -114.8
## 6          -206.0         -205.0
## 7          -161.7         -158.5
## 8          -141.2         -142.0
## 9          -152.7         -148.7
## 10          -99.3          -96.3
## 11          -89.4          -89.2
## 12          -93.1          -96.7
## 13          -98.6          -97.7
## 14          -97.7         -103.8
## 15          -99.0          -97.3
## 16          -98.4          -99.7
## 17         -109.8         -112.1
## 18         -114.6         -117.2
## 19         -102.6         -102.3
## 20         -121.0         -122.5
## 21         -114.5         -114.4
## 22         -166.2         -163.9
## 23         -152.0         -151.4
## 24         -114.3         -111.9
## 25         -118.2         -116.4
## 26         -117.5         -119.3
## 27         -113.4         -112.8
## 28         -119.9         -118.7
## 29          -96.0          -96.1
## 30         -102.9         -101.2
## 31         -150.5         -153.9
## 32         -154.2         -153.3
## 33         -101.6          -98.2
## 34         -132.4         -129.8
## 35         -153.2         -155.6
## 36         -110.2         -105.8
## 37         -147.2         -143.6
## 38          -98.5          -96.4
## 39         -118.5         -117.3
## 40         -112.8         -109.7
## 41         -114.5         -114.5
## 42          -99.4          -99.3
## 43         -108.6         -110.1
## 44         -117.3         -116.6
## 45          -89.3          -90.5
## 46         -105.7         -104.0
## 47          -99.5          -99.8
## 48          -87.3          -88.8
## 49          -94.9          -95.5
## 50         -102.1         -104.8
## 51         -104.8         -101.2
## 52         -111.0         -112.7
## 53         -105.6         -104.2
## 54         -119.4         -121.1
CV ~ Gomp and Weibull? How does noises influence likelihood of Gompertz and Weibull fitting?
summary(lm(report$CV ~ report$BestModel ))
## 
## Call:
## lm(formula = report$CV ~ report$BestModel)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.172966 -0.063774 -0.003727  0.053454  0.215896 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           0.30348    0.02578  11.771 3.73e-16 ***
## report$BestModelGomp  0.04028    0.03425   1.176    0.245    
## report$BestModelWeib  0.02557    0.03201   0.799    0.428    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09296 on 51 degrees of freedom
## Multiple R-squared:  0.02662,    Adjusted R-squared:  -0.01155 
## F-statistic: 0.6973 on 2 and 51 DF,  p-value: 0.5026
summary(lm(report$CV ~ report$WeibLogLikFlex ))
## 
## Call:
## lm(formula = report$CV ~ report$WeibLogLikFlex)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15227 -0.04636 -0.01465  0.05047  0.19943 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.1347941  0.0601566   2.241  0.02934 * 
## report$WeibLogLikFlex -0.0016591  0.0005082  -3.265  0.00194 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08501 on 52 degrees of freedom
## Multiple R-squared:  0.1701, Adjusted R-squared:  0.1541 
## F-statistic: 10.66 on 1 and 52 DF,  p-value: 0.001941
summary(lm(report$CV ~ report$GompLogLikFlex  ))
## 
## Call:
## lm(formula = report$CV ~ report$GompLogLikFlex)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15432 -0.04772 -0.01208  0.04978  0.19843 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.1444593  0.0599704   2.409  0.01958 * 
## report$GompLogLikFlex -0.0015703  0.0005046  -3.112  0.00302 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08567 on 52 degrees of freedom
## Multiple R-squared:  0.157,  Adjusted R-squared:  0.1408 
## F-statistic: 9.685 on 1 and 52 DF,  p-value: 0.003017
summary(lm(report$CV ~ (report$GompLogLikFlex - report$WeibLogLikFlex)))
## 
## Call:
## lm(formula = report$CV ~ (report$GompLogLikFlex - report$WeibLogLikFlex))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15432 -0.04772 -0.01208  0.04978  0.19843 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.1444593  0.0599704   2.409  0.01958 * 
## report$GompLogLikFlex -0.0015703  0.0005046  -3.112  0.00302 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08567 on 52 degrees of freedom
## Multiple R-squared:  0.157,  Adjusted R-squared:  0.1408 
## F-statistic: 9.685 on 1 and 52 DF,  p-value: 0.003017
plot( report$GompLogLikFlex ~ report$CV, col="red", pch=3, xlim=c(0, 0.8), ylim=c(-220, -80))
points( report$CV, report$WeibLogLikFlex, col="blue", pch=4)
m1 = lm( report$GompLogLikFlex ~ report$CV)
m2 = lm( report$WeibLogLikFlex ~ report$CV)
abline( m1, col="red", lty=2)
abline( m2, col='blue', lty=1)
text(0.6, -210, "nearly the same!?")

The QIN-RLS data suggested that noisy system signal perfer Gompertz model, based on GG01 theory. Notice that CV measures distrubition of system signals and are different from white noises (errors)
report$DeltaGompWeiLLH = report$GompLogLikFlex - report$WeibLogLikFlex
plot( report$DeltaGompWeiLLH ~ report$CV )
m3 = lm( report$DeltaGompWeiLLH ~ report$CV)
abline(m3, col='red')

Show the results
report
##                            files           R       t0        n    avgLS
## 1          010305.BY4743.rls.tab 0.003361728 51.84926 6.986795 32.56667
## 2             010305.M34.rls.tab 0.002281149 27.19448 6.315472 27.00000
## 3          010305.YPS128.rls.tab 0.004208781 35.91839 5.003790 34.30000
## 4          010305.YPS163.rls.tab 0.001973314 29.91767 6.129599 32.40000
## 5          011705.BY4743.rls.tab 0.003199692 56.68345 7.020039 34.80000
## 6            011705.M2-8.rls.tab 0.004309832 40.19223 6.888514 24.96429
## 7            020105.M2-8.rls.tab 0.002100836 24.96629 6.782559 24.63265
## 8          020105.YPS128.rls.tab 0.003198883 31.92006 5.003532 35.53846
## 9              020205.M5.rls.tab 0.003607006 69.39799 6.950697 38.10811
## 10            020905.M32.rls.tab 0.004377059 25.52056 5.004739 28.03333
## 11         020905.YPS163.rls.tab 0.001118296 16.35315 5.001654 38.06667
## 12            030105.M34.rls.tab 0.003961421 23.40804 5.004505 27.03571
## 13         030105.YPS163.rls.tab 0.001921115 22.98321 5.002596 36.06667
## 14            030205.M13.rls.tab 0.002041629 24.67678 6.151194 27.79310
## 15             030205.M8.rls.tab 0.002059049 24.20832 5.002678 35.70000
## 16           030905.M1-2.rls.tab 0.006986271 35.56665 5.003291 27.33333
## 17            030905.M14.rls.tab 0.002795597 31.69570 5.003190 36.83333
## 18            030905.M22.rls.tab 0.005151605 39.94654 5.003192 32.86667
## 19             030905.M8.rls.tab 0.002583361 26.17782 5.003157 34.16667
## 20            032105.M14.rls.tab 0.003135334 53.10912 6.399874 36.26667
## 21         032105.RM112N.rls.tab 0.003270878 45.59994 5.003008 44.27586
## 22             040805.M5.rls.tab 0.009506987 74.89056 5.001534 34.57500
## 23         040805.YPS163.rls.tab 0.006231753 42.59927 5.004125 32.00000
## 24             041505.M5.rls.tab 0.002107127 43.50023 6.667947 36.80000
## 25         042805.BY4716.rls.tab 0.003931803 55.09461 6.888677 31.76667
## 26         042805.RM112N.rls.tab 0.003034956 43.87268 5.003003 43.86667
## 27          042805.SGU57.rls.tab 0.009287234 53.31357 6.523759 22.70000
## 28         050905.BY4742.rls.tab 0.015187375 75.50504 6.345264 22.09677
## 29     050905.sir2D.4742.rls.tab 0.011968830 25.04875 6.929371 12.54839
## 30 050905.sir2DSIR2.4742.rls.tab 0.014314338 39.37424 6.568399 15.80000
## 31            051704.M13.rls.tab 0.003702579 38.12647 6.828330 25.65854
## 32          051704.S288c.rls.tab 0.004622237 45.92097 6.953311 26.26829
## 33     051805.sir2D.4742.rls.tab 0.003326837 14.51431 7.435202 12.83784
## 34 051805.sir2DSIR2.4742.rls.tab 0.009062209 30.52449 6.920478 15.77500
## 35            051805.SK1.rls.tab 0.016208627 62.59829 6.297356 19.46341
## 36           051805.W303.rls.tab 0.004902812 14.81653 5.006306 19.20000
## 37    052604.sir2D.4741a.rls.tab 0.006931647 19.30151 7.256420 12.48000
## 38           052604.W303.rls.tab 0.004830018 27.36559 7.252533 17.93333
## 39         053104.BY4741.rls.tab 0.003897944 55.09940 6.865935 32.03333
## 40         053104.BY4742.rls.tab 0.013531169 61.72988 6.492899 20.90000
## 41       053104.JSBY4741.rls.tab 0.002301507 41.09508 6.395818 35.40000
## 42           060805.101S.rls.tab 0.003189098 26.89393 5.003689 32.20690
## 43            060805.SK1.rls.tab 0.003586238 35.64948 6.775244 25.06667
## 44         061004.BY4741.rls.tab 0.007837809 55.44565 6.952965 24.00000
## 45         061004.BY4742.rls.tab 0.005960546 16.88916 5.006873 18.96667
## 46            090104.M22.rls.tab 0.002029863 30.79522 6.436227 30.80000
## 47             090104.M5.rls.tab 0.002727043 26.24409 5.003288 33.44828
## 48           091904.101S.rls.tab 0.003274548 23.70610 5.003873 29.11538
## 49           091904.M1-2.rls.tab 0.002276024 29.17914 6.373190 28.33333
## 50          091904.SGU57.rls.tab 0.003780261 35.99534 6.702348 25.10714
## 51           122004.101S.rls.tab 0.004350692 32.05298 5.004511 32.43333
## 52         122004.BY4743.rls.tab 0.004414673 34.99516 5.003808 32.83333
## 53            122004.M32.rls.tab 0.002369105 31.09866 6.678197 27.90000
## 54             122004.M5.rls.tab 0.004086084 47.11631 5.002861 40.43333
##        stdLS        CV  GompGFlex    GompRFlex GompLogLikFlex GompAICFlex
## 1  10.666361 0.3275239 0.07697842 4.520672e-03         -116.8         238
## 2   8.870719 0.3285451 0.14641276 1.602638e-03         -104.5         213
## 3  10.034939 0.2925638 0.11136263 1.483120e-03         -110.8         226
## 4   8.528249 0.2632176 0.13323490 1.056716e-03         -106.1         216
## 5  11.244616 0.3231211 0.07043570 4.463297e-03         -118.8         242
## 6   9.566921 0.3832243 0.09917977 5.775350e-03         -206.0         416
## 7   6.197089 0.2515802 0.15850580 2.018556e-03         -161.7         327
## 8   9.566515 0.2691877 0.12531128 8.467668e-04         -141.2         286
## 9  13.817830 0.3625955 0.05756788 4.894747e-03         -152.7         309
## 10  5.833810 0.2081026 0.15673277 1.227489e-03          -99.3         203
## 11  4.968406 0.1305185 0.24459288 1.249275e-05          -89.4         183
## 12  7.593770 0.2808792 0.17087720 9.632527e-04          -93.1         190
## 13  6.410839 0.1777497 0.17403638 1.910733e-04          -98.6         201
## 14  7.866653 0.2830434 0.16127313 1.059086e-03          -97.7         199
## 15  6.170844 0.1728528 0.16522928 2.747861e-04          -99.0         202
## 16  9.876156 0.3613228 0.11246404 3.283654e-03          -98.4         201
## 17 10.683804 0.2900580 0.12619877 6.691071e-04         -109.8         224
## 18 12.249513 0.3727032 0.10013325 2.220664e-03         -114.6         233
## 19  7.598018 0.2223810 0.15279846 4.799010e-04         -102.6         209
## 20 14.806647 0.4082715 0.07521646 3.146350e-03         -121.0         246
## 21 12.900433 0.2913649 0.08771906 1.080074e-03         -114.5         233
## 22 15.311949 0.4428619 0.05341122 6.731125e-03         -166.2         336
## 23 10.940398 0.3418874 0.09389769 3.011183e-03         -152.0         308
## 24 10.179086 0.2766056 0.09173172 2.061227e-03         -114.3         233
## 25 12.082142 0.3803403 0.07246963 5.281817e-03         -118.2         240
## 26 13.325457 0.3037718 0.09117251 9.902588e-04         -117.5         239
## 27 10.948626 0.4823183 0.07490550 1.132399e-02         -113.4         231
## 28 11.736992 0.5311632 0.05293360 1.766844e-02         -119.9         244
## 29  5.371770 0.4280845 0.15825671 1.688167e-02          -96.0         196
## 30  7.480549 0.4734525 0.10126119 1.775066e-02         -102.9         210
## 31  9.946381 0.3876441 0.10454519 4.730819e-03         -150.5         305
## 32 10.254327 0.3903690 0.08686882 6.451205e-03         -154.2         312
## 33  3.452161 0.2689052 0.26717114 5.645344e-03         -101.6         207
## 34  6.454923 0.4091869 0.13022750 1.273026e-02         -132.4         269
## 35 10.892882 0.5596594 0.06383451 1.868936e-02         -153.2         310
## 36  3.188119 0.1660479 0.26993030 9.700421e-04         -110.2         224
## 37  4.371709 0.3502972 0.20362687 1.126646e-02         -147.2         298
## 38  6.085219 0.3393245 0.14491620 7.578039e-03          -98.5         201
## 39 12.385986 0.3866593 0.07246639 5.139799e-03         -118.5         241
## 40 10.178917 0.4870295 0.06471182 1.635804e-02         -112.8         230
## 41 11.352047 0.3206793 0.09711885 1.921016e-03         -114.5         233
## 42  7.710750 0.2394130 0.14872996 7.326872e-04          -99.4         203
## 43  9.645200 0.3847819 0.11178011 4.413639e-03         -108.6         221
## 44 10.230673 0.4262780 0.07199986 1.096505e-02         -117.3         239
## 45  5.061575 0.2668669 0.23682017 1.550829e-03          -89.3         183
## 46  7.897621 0.2564163 0.12936774 1.492113e-03         -105.7         215
## 47  7.953374 0.2377813 0.15241271 5.365022e-04          -99.5         203
## 48  7.778570 0.2671636 0.16872944 6.950097e-04          -87.3         179
## 49  8.633566 0.3047141 0.13650874 1.691235e-03          -94.9         194
## 50 10.130041 0.4034725 0.11074093 4.400827e-03         -102.1         208
## 51  6.891691 0.2124879 0.12479182 1.444821e-03         -104.8         214
## 52 10.680576 0.3252967 0.11430051 1.577003e-03         -111.0         226
## 53  7.906130 0.2833738 0.12802240 2.259762e-03         -105.6         215
## 54 14.204621 0.3513097 0.08489598 1.638453e-03         -119.4         243
##    WeibShapeFlex WeibRateFlex WeibLogLikFlex WeibAICFlex BestModel
## 1       3.261288     36.32122         -113.0         230      Weib
## 2       3.765034     29.99508         -106.8         218      Gomp
## 3       4.054009     37.86399         -110.8         226        <2
## 4       4.548007     35.57140         -105.8         216        <2
## 5       3.280775     38.76066         -114.8         234      Weib
## 6       2.887681     28.00442         -205.0         414      Weib
## 7       4.455201     26.99855         -158.5         321      Weib
## 8       4.514794     39.02985         -142.0         288      Gomp
## 9       2.992231     42.69465         -148.7         301      Weib
## 10      5.027798     30.41238          -96.3         197      Weib
## 11      9.442320     40.16692          -89.2         182        <2
## 12      4.269533     29.49942          -96.7         197      Gomp
## 13      6.562842     38.70434          -97.7         199      Weib
## 14      3.867366     30.11810         -103.8         212      Gomp
## 15      6.405254     38.26809          -97.3         199      Weib
## 16      3.211352     30.47489          -99.7         203      Gomp
## 17      4.375519     40.57677         -112.1         228      Gomp
## 18      3.146918     36.73987         -117.2         238      Gomp
## 19      5.392529     37.10399         -102.3         209        <2
## 20      2.810727     40.81549         -122.5         249      Gomp
## 21      4.045783     48.91572         -114.4         233        <2
## 22      2.470620     39.09320         -163.9         332      Weib
## 23      3.360932     35.71519         -151.4         307        <2
## 24      4.004311     40.53145         -111.9         228      Weib
## 25      2.909731     35.65364         -116.4         237      Weib
## 26      4.036826     48.37379         -119.3         243      Gomp
## 27      2.250964     25.65845         -112.8         230        <2
## 28      1.954315     24.80903         -118.7         241      Weib
## 29      2.506113     14.06274          -96.1         196        <2
## 30      2.280870     17.85698         -101.2         206      Weib
## 31      2.760441     28.54233         -153.9         312      Gomp
## 32      2.792964     29.42942         -153.3         311        <2
## 33      4.043804     14.14174          -98.2         200      Weib
## 34      2.681618     17.78053         -129.8         264      Weib
## 35      1.743683     21.63084         -155.6         315      Gomp
## 36      5.940896     20.56914         -105.8         216      Weib
## 37      3.146271     13.96559         -143.6         291      Weib
## 38      3.215089     19.97318          -96.4         197      Weib
## 39      2.869141     35.94135         -117.3         239      Weib
## 40      2.228588     23.68764         -109.7         223      Weib
## 41      3.661056     39.35057         -114.5         233        <2
## 42      5.018631     35.06636          -99.3         203        <2
## 43      2.982129     28.05650         -110.1         224      Gomp
## 44      2.437297     26.79805         -116.6         237      Weib
## 45      4.501854     20.75329          -90.5         185      Gomp
## 46      4.432582     33.80532         -104.0         212      Weib
## 47      5.195892     36.42391          -99.8         204        <2
## 48      4.758210     31.89759          -88.8         182      Gomp
## 49      3.948049     31.35905          -95.5         195        <2
## 50      2.767603     28.06295         -104.8         214      Gomp
## 51      4.912670     35.14447         -101.2         206      Weib
## 52      3.710021     36.43191         -112.7         229      Gomp
## 53      3.965354     30.79124         -104.2         212      Weib
## 54      3.418825     45.13994         -121.1         246      Gomp
##    DeltaGompWeiLLH
## 1             -3.8
## 2              2.3
## 3              0.0
## 4             -0.3
## 5             -4.0
## 6             -1.0
## 7             -3.2
## 8              0.8
## 9             -4.0
## 10            -3.0
## 11            -0.2
## 12             3.6
## 13            -0.9
## 14             6.1
## 15            -1.7
## 16             1.3
## 17             2.3
## 18             2.6
## 19            -0.3
## 20             1.5
## 21            -0.1
## 22            -2.3
## 23            -0.6
## 24            -2.4
## 25            -1.8
## 26             1.8
## 27            -0.6
## 28            -1.2
## 29             0.1
## 30            -1.7
## 31             3.4
## 32            -0.9
## 33            -3.4
## 34            -2.6
## 35             2.4
## 36            -4.4
## 37            -3.6
## 38            -2.1
## 39            -1.2
## 40            -3.1
## 41             0.0
## 42            -0.1
## 43             1.5
## 44            -0.7
## 45             1.2
## 46            -1.7
## 47             0.3
## 48             1.5
## 49             0.6
## 50             2.7
## 51            -3.6
## 52             1.7
## 53            -1.4
## 54             1.7
TODO: Calculate the white noises (fitting errors) using the fitting residues for Gompertz and Weibull models.
# report$residues ?? 

No comments:

Post a Comment