Friday, March 18, 2016

to read: reference on aging,

     Blumenthal HT. Amyloidosis: A Universal Disease of Aging? 2004. Journal of Gerontology: medical sciences. 2004. 59A(4): 361–369.

   James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014. Mar 25;82(12):1045-50. doi:10.1212/WNL.0000000000000240.

Aviv Cohen, Liron Ross, Iftach Nachman, and Shoshana Bar-Nun. Aggregation of PolyQ Proteins Is Increased upon Yeast Aging and Affected by Sir2 and Hsf1: Novel Quantitative Biochemical and Microscopic Assays. PLoS One. 2012. 7(9): e44785.

4.     D. C. David, N. Ollikainen, J. C. Trinidad, M. P. Cary, A. L. Burlingame, and C. Kenyon. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biology. 2010. 8(8)

5.     Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer's disease: preliminary observations. Neurobiol Aging. 2015. Sep; 36(9):2475-82. doi: 10.1016/j.neurobiolaging.2015.05.020.

6.     Leonor Miller-Fleming, Flaviano Giorgini, and Tiago F. Outeiro. Yeast as a model for studying human neurodegenerative disorders. Biotechnol. J. 2008. 3: 325–338

7.     Sandra Tenreiro & Tiago Fleming Outeiro. Simple is good: yeast models of neurodegeneration, FEMS Yeast Res. 2010. Dec; 10(8):970-9

8.     Amor AJ, Castanzo DT, Delany SP, Selechnik DM, van Ooy A, Cameron DM. The ribosome-associated complex antagonizes prion formation in yeast. Prion. 2015. 9(2):144-64. doi: 10.1080/19336896.2015.1022022.

9.     Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol. 1999 Dec;19(12):8103-12.

12.  Makrides S.C. Protein synthesis and degradation during aging and senescence. Biol. Rev. Camb. Philos. Soc. 1983. 58:343–422.3. 

13.  Rattan S.I. Synthesis, modifications, and turnover of proteins during aging. Exp. Gerontol. 1996. 31:33–47.

14.  Janssens GE, Meinema AC, Gonzalez J, Wolters JC, Schmidt A, Guryev V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M. Protein biogenesis machinery is a driver of replicative aging in yeast. eLife. 2015: 4:e08527. DOI: 10.7554/eLife.08527

17.  Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL, Promislow DEL, Thomas JH, Kaeberlein M, Kennedy BK. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 2008. 18: 564–570.

18.  Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R, Shen B, and Liu JO. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol. 2010. 6, 209–17. doi: 10.1038/nchembio.304.

20.  Kaeberlein M and Kennedy BK. HOT TOPIC: Protein translation. Aging Cell 2007. 6: 731–734.

21.  Ding Q, Markesbery WR, Chen Q, Li F, and Jeffrey N. Keller. Ribosome Dysfunction Is an Early Event in Alzheimer's Disease. The Journal of Neuroscience. 2005. 25(40): 9171-9175; doi: 10.1523/JNEUROSCI.3040-05.2005

22.  Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010. Nov;11(11):777-88. doi: 10.1038/nrm2993.

23.  Saarikangas J and Barral Y. Protein aggregates are associated with replicative aging without compromising protein quality control. Elife. 2015 Nov 6;4. pii: e06197. doi: 10.7554/eLife.06197.

24.  Wickner RB, Edskes HK, Bateman DA, Gorkovskiy A, Dayani Y, Bezsonov EE, and Mukhamedova M. Yeast Prions: Proteins Templating Conformation and an Anti-prion System. PLoS Pathog 2015. 11(2): e1004584. doi:10.1371/journal.ppat.1004584

25.  Allen K. D., Chernova T. A., Tennant E. P., Wilkinson K. D., Chernoff Y. O. Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J. Biol. Chem. 2007. 282, 3004–3013

26.  Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell. 2015. Sep 10; 162(6):1286-98. doi: 10.1016/j.cell.2015.08.041.

27.  Kabani M, Redeker V, Melki R. A role for the proteasome in the turnover of Sup35p and in [PSI(+) ] prion propagation. Mol Microbiol. 2014 May; 92(3):507-28.

28.  Speldewinde SH, Doronina VA, Grant CM. Autophagy protects against de novo formation of the [PSI+] prion in yeast. Mol Biol Cell. 2015 Dec 15; 26(25):4541-51. doi: 10.1091/mbc.E15-08-0548.

29.  Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008. Aug 28; 454(7208):1088-95.

30.  Verghese J, Abrams J, Wang Y, and Morano KA. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiol. Mol. Biol. Rev. 2012. June; 76(2): 115-158

31.  Specht S, Miller SBM, Mogk A, Bukau B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae J Cell Biol. 2011. November 14; 195(4): 617–629. doi: 10.1083/jcb.201106037

32.  Kiktev DA, Melomed MM, Lu CD, Newnam GP, Chernoff YO. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Mol Microbiol. 2015. May;96(3):621-32. doi: 10.1111/mmi.12960. PMID: 25649498

33.  Lopez N, Halladay J, Walter W, Craig EA. SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes. J Bacteriol. 1999. 181: 3136–3143. PMCID: PMCPMC93769.

34.  Calderwood SK, Murshid A, Prince T. The Shock of Aging: Molecular Chaperones and the Heat Shock Response in Longevity and Aging – A Mini-Review. Gerontology 2009. 55:550–558.

35.  Shama S, Lai C-Y, Antoniazzi JM, Jiang JC, and Jazwinski SM. Heat Stress-Induced Life Span Extension in Yeast. Experimental Cell Research. 1998. 245, 379–388.

36.  Morley JF and Morimoto RI. Regulation of Longevity in Caenorhabditis elegans by Heat Shock Factor and Molecular Chaperones. Mol Biol Cell. 2004 Feb; 15(2): 657–664.

37.  Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OC, Kampinga HH. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell. 2015. Dec 25. doi: 10.1111/acel.12422

38.  Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. PNAS. 2002. 99(16): 10417–10422.

39.  Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science. 2006. Sep 15;313(5793):1604-10.

40.  Teixeira-Castro, A., Ailion, M., Jalles, A., Brignull, H. R., Vilaca, J. L., Dias, N., Rodrigues, P., Oliveira, J. F., Neves-Carvalho, A., Morimoto, R. I., & Maciel, P.  Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet. 2011. 20: 2996-3009. doi:10.1093/hmg/ddr203

41.  Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Antuono P, Butts AM, Hantke NC, Lancaster MA, Rao SM. Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders. Neuroimage. 2011 Jan 1;54(1):635-44. doi: 10.1016/j.neuroimage.2010.07.070.

42.  Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Hazlett KE, Figueroa CM, Kandah CC, Kay CD, Matthews MA, and Rao SM. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer's disease. Front Aging Neurosci. 2014; 6: 61. Published online 2014 Apr 23. doi:  10.3389/fnagi.2014.00061 PMCID: PMC4005962

43.  Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, and Nybo L. Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones. 2004 Jul; 9(3): 276–280.

44.  Sadowska-Krępa E and Kłapcińska B. Exercise-induced heat shock protein (HSP70) response in human skeletal muscle and leukocytes. Medicina Sportiva 2006. 10 (2):36-41

45.  Kayani AC, Morton JP, McArdle A: The exercise-induced stress response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 2008. 33:1033–1041.

46.  Aguilaniu H, Gustafsson L, Rigoulet M, Nyström T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 2003. 299:1751-1753.

47.  Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol. 2011. 408(3):432-48

48.  Erjavec N, Larsson L, Grantham J, and Nyström T. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes and Development. 2007. 21: 2410-2421.

49.  Tessarz P, Schwarz M, Mogk A, Bukau B. The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol Cell Biol. 2009. 29: 3738-3745.

50.  Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell. 2010. 140:257- 267.

51.  Orlandi I, Bettiga M, Alberghina L, Nystrom T, Vai M: Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim Biophys Acta 2010. 1803:630-638.

52.  Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R. Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell. 2011. 147: 1186-1196.

53.  Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. Elife. 2014 Dec 9:3. doi: 10.7554/eLife.04288.

54.  Liu B, Larsson L, Franssens V, Hao X, Hill SM, Andersson V, Hoglund D, Song J, Yang X, Oling D, Grantham J, Winderickx J, Nystrom T. Segregation of protein aggregates involves actin and the polarity machinery. Cell. 2011. 147: 959-961.

55.  Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A, Ross RT, McClain M, Li R. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell. 2014. 159(3): 530-42.

56.  Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 2009. 459:802–807.

57.  Moore DL, Pilz GA, Araúzo-Bravo MJ, Barral Y, Jessberger S. A mechanism for the segregation of age in mammalian neural stem cells. Science. 2015. Sep 18; 349(6254):1334-8. doi: 10.1126/science.aac9868.

58.  Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 1996. 84:633–642

59.  Ibstedt S, Sideri TC, Grant CM, Tamás MJ. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biol Open. 2014. Sep 12;3(10):913-23. doi: 10.1242/bio.20148938.

60.  Rand JD and Grant CM. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell. 2006. 17: 387–401. 10.1091/mbc.E05-06-0520

61.  Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. 2003. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci 100: 3889–3894

62.  Lindstrom DL, Gottschling DE. The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics. 2009. 183:413–422. doi: 10.1534/genetics.109.106229.

63.  Taylor S.C., Posch A. The design of a quantitative Western blot experiment. Biomed Res Int. 2014. Article ID 361590

64.  Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959. 183:1751-1752.

65.  Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, and Kennedy BK. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005. Nov 18; 310(5751): 1193-6.

66.  Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA, Gafken PR, Hsu JJ, and Gottschling DE. Identification of Long-Lived Proteins Retained in Cells Undergoing Repeated Asymmetric Divisions. 2014. PNAS 111(39): 14019-14026.

No comments:

Post a Comment