I could modify _Survival Analysis Gomp Weib_20140705qin.R to do this. However, I apparently finished this work in "_explore.20140705.R". In this script, I also used SceORF_name.csv to pick up the single-gene mutant. I did exactly the same thing half a year later.
"ken-RLS-byORF20150111.csv" is the output file.
Modified "_explore.20140705.R".
rm(list=ls())
setwd("~/projects/0.network.aging.prj/9.ken")
list.files()
tb = read.csv('conditionsWeibRedo_qin.csv')
tb$genotypeOri = tb$genotype #change 20150111
tb$genotype = toupper( as.character(tb$genotype))
tb$media = as.character(tb$media)
str(tb)
tb[grep("ctf", tb$genotype, ignore.case=T), ]
tb2 = read.csv("SceORF_name.csv", header=F, colClass=c("character", "character"))
names(tb2) = c('ORF','name')
length(unique(tb$genotype))
table( tb$genotype %in% tb2$name )
table( tb2$name %in% tb$genotype )
tb$flag = tb$genotype %in% tb2$name
sub = tb[tb$flag, ]
sub$ORF = tb2$ORF[match(sub$genotype, tb2$name)]
length(unique(sub$genotype))
x = table(sub$media)
x[grep("YPD",names(x))]
tb$media[grep("% D", tb$media, ignore.case=T)]
write.csv(sub, "ken-RLS-byORF20150111.csv", row.names=F, quote=F)
x = sub[sub$n>30, ]
hist(log10(x$n)/log10(3))
summary(sub)
tb[tb$n>1000,]
No comments:
Post a Comment